Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Clean Transaction Data | Financial Data Analysis for Bankers
Python for Bankers

bookChallenge: Clean Transaction Data

In banking, transaction data often arrives with missing values and duplicate records, which can hinder accurate analysis and reporting. As you work with financial DataFrames, it's crucial to ensure that the data is clean, consistent, and ready for downstream processing. Your task is to take a DataFrame containing transaction records, some of which have missing amounts and duplicate entries, and prepare it for further use by addressing these common data quality issues.

Tehtävä

Swipe to start coding

Given a DataFrame containing transaction records, some with missing amounts and duplicate entries, your goal is to clean the data for further analysis.

  • Fill all missing values in the Amount column with zero.
  • Remove any duplicate rows from the DataFrame.
  • Ensure all values in the Amount column are of type float.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 7
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

close

bookChallenge: Clean Transaction Data

Pyyhkäise näyttääksesi valikon

In banking, transaction data often arrives with missing values and duplicate records, which can hinder accurate analysis and reporting. As you work with financial DataFrames, it's crucial to ensure that the data is clean, consistent, and ready for downstream processing. Your task is to take a DataFrame containing transaction records, some of which have missing amounts and duplicate entries, and prepare it for further use by addressing these common data quality issues.

Tehtävä

Swipe to start coding

Given a DataFrame containing transaction records, some with missing amounts and duplicate entries, your goal is to clean the data for further analysis.

  • Fill all missing values in the Amount column with zero.
  • Remove any duplicate rows from the DataFrame.
  • Ensure all values in the Amount column are of type float.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 7
single

single

some-alt