Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Standardization | Basic Concepts of PCA
Principal Component Analysis

book
Standardization

Finally, let's start with the analysis of the PCA mathematical model.

First of all, we start by standardizing the data that the algorithm will work with. By standardization is meant the reduction of all continuous variables to a set where the mean will be equal to 0.

This is an important step because PCA cannot work properly if there is a variable in the dataset with a range of values ​​0-20 and 100-10,000, for example. PCA will start to "ignore" the characteristic with a small spread (0-20) and it will not be able to affect the result of the algorithm.

The formula for data standardization is very simple. Subtract the mean from the value of the variable and divide the result by the standard deviation:

The scikit-learn Python library allows us to do this in 1 line:

python
# Importing libraries
import numpy as np
from sklearn.preprocessing import StandardScaler

# Standardizing
X = np.asarray([[1, 3],[2, 10],[3, 35],[4, 40]], dtype = np.float64)
X_scaled = StandardScaler().fit_transform(X)
Tehtävä

Swipe to start coding

Implement standardization of X array using the numpy functions np.mean() and np.std().

Ratkaisu

# Importing the library
import numpy as np

# Array of numbers
X = np.asarray([1, 2, 3, 4], dtype = np.float64)

# Perform a standardization
X_scaled = (X - np.mean(X)) / np.std(X)
print(X_scaled)

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 1
# Importing the library
import numpy as np

# Array of numbers
X = np.asarray([1, 2, 3, 4], dtype = np.float64)

# Perform a standardization
X_scaled = (___ - ___) / ___
print(X_scaled)

Kysy tekoälyä

expand
ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

some-alt