Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Automate Portfolio Metrics Calculation | Advanced Analysis and Automation for Investors
Python for Investors

bookChallenge: Automate Portfolio Metrics Calculation

Tehtävä

Swipe to start coding

You are given a DataFrame of daily closing prices for several assets and a list of portfolio weights. Your task is to automate the calculation of three key portfolio metrics:

  • Calculate the expected annual return of the portfolio (assume 252 trading days in a year);
  • Calculate the annualized volatility (standard deviation) of the portfolio;
  • Calculate the Sharpe Ratio of the portfolio (assume the risk-free rate is 0).

Implement the function calculate_portfolio_metrics(prices_df, weights) to return a dictionary with keys 'expected_annual_return', 'annual_volatility', and 'sharpe_ratio', each mapped to the corresponding float value.

Use only the allowed libraries. The function will be tested with different price data and weights.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 3
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Automate Portfolio Metrics Calculation

Pyyhkäise näyttääksesi valikon

Tehtävä

Swipe to start coding

You are given a DataFrame of daily closing prices for several assets and a list of portfolio weights. Your task is to automate the calculation of three key portfolio metrics:

  • Calculate the expected annual return of the portfolio (assume 252 trading days in a year);
  • Calculate the annualized volatility (standard deviation) of the portfolio;
  • Calculate the Sharpe Ratio of the portfolio (assume the risk-free rate is 0).

Implement the function calculate_portfolio_metrics(prices_df, weights) to return a dictionary with keys 'expected_annual_return', 'annual_volatility', and 'sharpe_ratio', each mapped to the corresponding float value.

Use only the allowed libraries. The function will be tested with different price data and weights.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 3
single

single

some-alt