Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Predict Equipment Failure Time | Engineering Data Science Applications
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Engineers

bookChallenge: Predict Equipment Failure Time

Predictive modeling plays a crucial role in engineering maintenance, allowing you to anticipate equipment failures and schedule repairs before breakdowns occur. In the previous chapter, you learned how predictive models can use historical data to estimate when a system might need attention. Now, you will apply this knowledge to a practical scenario using scikit-learn's LinearRegression: you have data on total operating hours and corresponding time-to-failure in days for several machines. Your goal is to build a model that predicts how long a machine will last before failing, given its operating hours.

Tehtävä

Swipe to start coding

Given lists of machine operating hours and their corresponding time-to-failure in days, build a linear regression model to predict future failures.

  • Fit a linear regression model using hours_list as input and failure_days_list as output.
  • Retrieve the model coefficient and intercept.
  • Use the model to predict the time-to-failure for the given query_hours.
  • Return the coefficient, intercept, and prediction.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 5
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you walk me through the steps to build the predictive model using this data?

What does the dataset look like, and how should I prepare it for modeling?

How do I interpret the results from the LinearRegression model in this context?

close

bookChallenge: Predict Equipment Failure Time

Pyyhkäise näyttääksesi valikon

Predictive modeling plays a crucial role in engineering maintenance, allowing you to anticipate equipment failures and schedule repairs before breakdowns occur. In the previous chapter, you learned how predictive models can use historical data to estimate when a system might need attention. Now, you will apply this knowledge to a practical scenario using scikit-learn's LinearRegression: you have data on total operating hours and corresponding time-to-failure in days for several machines. Your goal is to build a model that predicts how long a machine will last before failing, given its operating hours.

Tehtävä

Swipe to start coding

Given lists of machine operating hours and their corresponding time-to-failure in days, build a linear regression model to predict future failures.

  • Fit a linear regression model using hours_list as input and failure_days_list as output.
  • Retrieve the model coefficient and intercept.
  • Use the model to predict the time-to-failure for the given query_hours.
  • Return the coefficient, intercept, and prediction.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 5
single

single

some-alt