Challenge: Solving Task Using Bagging Regressor
Swipe to start coding
The load_diabetes
dataset contains ten baseline variables (age, sex, BMI, average blood pressure, and six blood serum measurements) for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline. This dataset is used for predicting the continuous variable, representing diabetes progression, based on the given features.
Your task is to use Bagging Regressor to solve the regression problem on load_diabetes
dataset:
- Use a simple
LinearRegression
model as the base model of the ensemble. - Use the
BaggingRegressor
class to create an ensemble. - Use Mean Squared Error(MSE) to evaluate the results.
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Tiivistä tämä luku
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 4.55
Challenge: Solving Task Using Bagging Regressor
Pyyhkäise näyttääksesi valikon
Swipe to start coding
The load_diabetes
dataset contains ten baseline variables (age, sex, BMI, average blood pressure, and six blood serum measurements) for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline. This dataset is used for predicting the continuous variable, representing diabetes progression, based on the given features.
Your task is to use Bagging Regressor to solve the regression problem on load_diabetes
dataset:
- Use a simple
LinearRegression
model as the base model of the ensemble. - Use the
BaggingRegressor
class to create an ensemble. - Use Mean Squared Error(MSE) to evaluate the results.
Ratkaisu
Kiitos palautteestasi!
Awesome!
Completion rate improved to 4.55single