Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Discovering Patterns with Combined Visualizations | Multivariate and Grouped EDA
Exploratory Data Analysis with Python

bookDiscovering Patterns with Combined Visualizations

Combining multiple visualization techniques is a powerful way to reveal complex relationships and trends in retail data that might remain hidden with single plots.

  • By overlaying or arranging different types of plots, you can:
    • Compare distributions;
    • Spot outliers;
    • Identify interactions between variables more effectively.

For example:

  • Overlaying a boxplot with a swarmplot allows you to see both summary statistics and individual data points;
  • Faceted grids help you compare distributions across groups or categories at a glance.
12345678910111213141516171819
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Sample retail sales data data = { "Product_Category": ["A", "A", "B", "B", "C", "C", "A", "B", "C", "A", "B", "C"], "Sales": [250, 300, 200, 220, 330, 310, 270, 210, 340, 260, 230, 320] } df = pd.DataFrame(data) plt.figure(figsize=(8, 6)) sns.boxplot(x="Product_Category", y="Sales", data=df, showfliers=False, width=0.5) sns.swarmplot(x="Product_Category", y="Sales", data=df, color="black", size=6) plt.title("Sales by Product Category: Boxplot with Swarmplot Overlay") plt.ylabel("Sales") plt.xlabel("Product Category") plt.tight_layout() plt.show()
copy
123456789101112131415161718
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Extended sample with Store_Location data = { "Store_Location": ["East", "West", "East", "West", "East", "West", "East", "West", "East", "West", "East", "West"], "Sales": [250, 300, 200, 220, 330, 310, 270, 210, 340, 260, 230, 320] } df = pd.DataFrame(data) g = sns.FacetGrid(df, col="Store_Location", height=4, aspect=1) g.map_dataframe(sns.histplot, x="Sales", bins=5, color="skyblue", edgecolor="black") g.set_titles(col_template="Store: {col_name}") g.set_axis_labels("Sales", "Count") plt.suptitle("Sales Distribution Across Store Locations", y=1.08) plt.tight_layout() plt.show()
copy

Combining different visualizations gives you a more complete understanding of retail data. Here’s how these techniques work together:

  • Overlaying a boxplot and swarmplot:

    • Highlights median sales and the spread within each product category;
    • Shows the precise distribution and clustering of individual sales points;
    • Quickly uncovers outliers or categories with unusual variation.
  • Faceted grid of histograms:

    • Lets you compare sales distributions across multiple store locations side by side;
    • Makes it easier to spot regional trends or anomalies.

Using these combined approaches gives you richer, more actionable insights than relying on single plots alone. This supports more informed business decisions and helps you detect patterns that might otherwise remain hidden.

question mark

What are the benefits of combining different visualization techniques when analyzing retail data?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 4. Luku 4

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you explain when to use a boxplot with a swarmplot versus a faceted grid?

What other combinations of plots work well for retail data analysis?

Can you suggest ways to interpret the results from these visualizations?

Awesome!

Completion rate improved to 5.56

bookDiscovering Patterns with Combined Visualizations

Pyyhkäise näyttääksesi valikon

Combining multiple visualization techniques is a powerful way to reveal complex relationships and trends in retail data that might remain hidden with single plots.

  • By overlaying or arranging different types of plots, you can:
    • Compare distributions;
    • Spot outliers;
    • Identify interactions between variables more effectively.

For example:

  • Overlaying a boxplot with a swarmplot allows you to see both summary statistics and individual data points;
  • Faceted grids help you compare distributions across groups or categories at a glance.
12345678910111213141516171819
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Sample retail sales data data = { "Product_Category": ["A", "A", "B", "B", "C", "C", "A", "B", "C", "A", "B", "C"], "Sales": [250, 300, 200, 220, 330, 310, 270, 210, 340, 260, 230, 320] } df = pd.DataFrame(data) plt.figure(figsize=(8, 6)) sns.boxplot(x="Product_Category", y="Sales", data=df, showfliers=False, width=0.5) sns.swarmplot(x="Product_Category", y="Sales", data=df, color="black", size=6) plt.title("Sales by Product Category: Boxplot with Swarmplot Overlay") plt.ylabel("Sales") plt.xlabel("Product Category") plt.tight_layout() plt.show()
copy
123456789101112131415161718
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Extended sample with Store_Location data = { "Store_Location": ["East", "West", "East", "West", "East", "West", "East", "West", "East", "West", "East", "West"], "Sales": [250, 300, 200, 220, 330, 310, 270, 210, 340, 260, 230, 320] } df = pd.DataFrame(data) g = sns.FacetGrid(df, col="Store_Location", height=4, aspect=1) g.map_dataframe(sns.histplot, x="Sales", bins=5, color="skyblue", edgecolor="black") g.set_titles(col_template="Store: {col_name}") g.set_axis_labels("Sales", "Count") plt.suptitle("Sales Distribution Across Store Locations", y=1.08) plt.tight_layout() plt.show()
copy

Combining different visualizations gives you a more complete understanding of retail data. Here’s how these techniques work together:

  • Overlaying a boxplot and swarmplot:

    • Highlights median sales and the spread within each product category;
    • Shows the precise distribution and clustering of individual sales points;
    • Quickly uncovers outliers or categories with unusual variation.
  • Faceted grid of histograms:

    • Lets you compare sales distributions across multiple store locations side by side;
    • Makes it easier to spot regional trends or anomalies.

Using these combined approaches gives you richer, more actionable insights than relying on single plots alone. This supports more informed business decisions and helps you detect patterns that might otherwise remain hidden.

question mark

What are the benefits of combining different visualization techniques when analyzing retail data?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 4. Luku 4
some-alt