Haaste: Täydellisen ML-putken Luominen
Luo nyt putki, joka sisältää lopullisen estimointimenetelmän. Tämä tuottaa koulutetun ennustavan putken, joka voi tuottaa ennusteita uusille havaintoarvoille käyttämällä .predict()-metodia.
Koska ennustaja vaatii kohdemuuttujan y, koodaa se erikseen X:lle rakennetusta putkesta. Käytä LabelEncoder-luokkaa kohteen koodaamiseen.
Koska ennusteet ovat koodattuina arvoina 0, 1 tai 2, .inverse_transform()-luokan LabelEncoder-metodia voidaan käyttää niiden muuntamiseen takaisin alkuperäisiksi luokiksi: 'Adelie', 'Chinstrap' tai 'Gentoo'.
Swipe to start coding
Sinulla on pingviini DataFrame df. Rakenna ja kouluta täydellinen ML-putki käyttäen KNeighborsClassifier-luokittelijaa.
- Koodaa kohdemuuttuja
ykäyttäenLabelEncoder-luokkaa. - Luo
ColumnTransformer(ct), joka käyttääOneHotEncoder-enkooderia sarakkeisiin'island'ja'sex', käyttäen asetustaremainder='passthrough'. - Rakenna putki, joka sisältää:
•
ct•SimpleImputer(strategy='most_frequent')•StandardScaler•KNeighborsClassifier - Sovita putki
X:ään jay:hyn. - Ennusta
X:llä ja tulosta ensimmäiset dekoodatut luokkanimet.
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
How do I use LabelEncoder to encode the target variable?
Can you show me how to add a final estimator to the pipeline?
What is the purpose of encoding the target variable separately from the features?
Awesome!
Completion rate improved to 3.13
Haaste: Täydellisen ML-putken Luominen
Pyyhkäise näyttääksesi valikon
Luo nyt putki, joka sisältää lopullisen estimointimenetelmän. Tämä tuottaa koulutetun ennustavan putken, joka voi tuottaa ennusteita uusille havaintoarvoille käyttämällä .predict()-metodia.
Koska ennustaja vaatii kohdemuuttujan y, koodaa se erikseen X:lle rakennetusta putkesta. Käytä LabelEncoder-luokkaa kohteen koodaamiseen.
Koska ennusteet ovat koodattuina arvoina 0, 1 tai 2, .inverse_transform()-luokan LabelEncoder-metodia voidaan käyttää niiden muuntamiseen takaisin alkuperäisiksi luokiksi: 'Adelie', 'Chinstrap' tai 'Gentoo'.
Swipe to start coding
Sinulla on pingviini DataFrame df. Rakenna ja kouluta täydellinen ML-putki käyttäen KNeighborsClassifier-luokittelijaa.
- Koodaa kohdemuuttuja
ykäyttäenLabelEncoder-luokkaa. - Luo
ColumnTransformer(ct), joka käyttääOneHotEncoder-enkooderia sarakkeisiin'island'ja'sex', käyttäen asetustaremainder='passthrough'. - Rakenna putki, joka sisältää:
•
ct•SimpleImputer(strategy='most_frequent')•StandardScaler•KNeighborsClassifier - Sovita putki
X:ään jay:hyn. - Ennusta
X:llä ja tulosta ensimmäiset dekoodatut luokkanimet.
Ratkaisu
Kiitos palautteestasi!
single