Yhteenveto
Tämän kurssin keskeiset aiheet on tiivistetty alla. Yhteenvetomateriaali on ladattavissa tämän sivun lopussa.
TensorFlow-asennus
Asennus
pip install tensorflow
Tuonti
# Import the TensorFlow library with the alias tf
import tensorflow as tf
Tensorityypit
Yksinkertainen tensorin luonti
# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])
# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])
# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])
Tensorin ominaisuudet
- Rakenne: kertoo tensorin ulottuvuuksien lukumäärän. Esimerkiksi matriisilla rakenne on 2. Tensorin rakenteen saa selville
.ndim-attribuutilla:
print(f'Rank of a tensor: {tensor.ndim}')
- Muoto: kuvaa, kuinka monta arvoa on kussakin ulottuvuudessa. 2x3-matriisin muoto on
(2, 3). Muotoparametrin pituus vastaa tensorin rakennetta (sen ulottuvuuksien lukumäärää). Tensorin muodon saa selville.shape-attribuutilla:
print(f'Shape of a tensor: {tensor.shape}')
- Tyypit: Tensorit voivat olla useissa eri tietotyypeissä. Yleisimpiä ovat esimerkiksi
float32,int32jastring. Tensorin tietotyypin saa selville.dtype-attribuutilla:
print(f'Data type of a tensor: {tensor.dtype}')
Tensorin akselit
Tensorien käyttökohteet
- Table Data
- Tekstijonot
- Numeeriset jaksot
- Kuvankäsittely
- Videonkäsittely
Erät
Tensorin luontimenetelmät
# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])
# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])
# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))
# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))
# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)
# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)
# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)
# Tensor of shape (2, 2) with random values normally distributed
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)
# Tensor of shape (2, 2) with random values uniformly distributed
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)
Muunnokset
- NumPy Tensoriksi
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])
# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
- Pandas Tensoriksi
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
- Vakio-tensorista muuttuja-tensoriksi
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)
# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))
Tietotyypit
# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)
# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)
Aritmetiikka
- Yhteenlasku
c1 = tf.add(a, b)
c2 = a + b
# Changes the object inplace without creating a new one
a.assign_add(b)
- Vähennyslasku
c1 = tf.subtract(a, b)
c2 = a - b
# Inplace substraction
a.assign_sub(b)
- Alkioittainen kertolasku
c1 = tf.multiply(a, b)
c2 = a * b
- Jakolasku
c1 = tf.divide(a, b)
c2 = a / b
Lähetys (Broadcasting)
Lineaarialgebra
- Matriisikertolasku
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
- Matriisin käänteismatriisi
inverse_mat = tf.linalg.inv(matrix)
- Transponointi
transposed = tf.transpose(matrix)
- Pistetulo
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)
Muodon muuttaminen (Reshape)
# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])
# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))
Viipalointi
# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))
# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))
Muokkaaminen viipaloinnilla
# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Change the entire first row
tensor[0, :].assign([0, 0, 0])
# Modify the second and the third columns
tensor[:, 1:3].assign(tf.fill((3,2), 1))
Yhdistäminen
# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])
# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)
# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)
Reduktio-operaatiot
# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)
# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)
# Determine the maximum value
max_val = tf.reduce_max(tensor)
# Find the minimum value
min_val = tf.reduce_min(tensor)
Gradient Tape
# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)
# Start recording the operations
with tf.GradientTape() as tape:
# Define the calculations
y = tf.reduce_sum(x * x + 2 * z)
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])
print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")
@tf.function
@tf.function
def compute_gradient_conditional(x):
with tf.GradientTape() as tape:
if tf.reduce_sum(x) > 0:
y = x * x
else:
y = x * x * x
return tape.gradient(y, x)
x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
Oliko kaikki selvää?
Kiitos palautteestasi!
Osio 2. Luku 5
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Awesome!
Completion rate improved to 5.56
Yhteenveto
Pyyhkäise näyttääksesi valikon
Tämän kurssin keskeiset aiheet on tiivistetty alla. Yhteenvetomateriaali on ladattavissa tämän sivun lopussa.
TensorFlow-asennus
Asennus
pip install tensorflow
Tuonti
# Import the TensorFlow library with the alias tf
import tensorflow as tf
Tensorityypit
Yksinkertainen tensorin luonti
# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])
# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])
# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])
Tensorin ominaisuudet
- Rakenne: kertoo tensorin ulottuvuuksien lukumäärän. Esimerkiksi matriisilla rakenne on 2. Tensorin rakenteen saa selville
.ndim-attribuutilla:
print(f'Rank of a tensor: {tensor.ndim}')
- Muoto: kuvaa, kuinka monta arvoa on kussakin ulottuvuudessa. 2x3-matriisin muoto on
(2, 3). Muotoparametrin pituus vastaa tensorin rakennetta (sen ulottuvuuksien lukumäärää). Tensorin muodon saa selville.shape-attribuutilla:
print(f'Shape of a tensor: {tensor.shape}')
- Tyypit: Tensorit voivat olla useissa eri tietotyypeissä. Yleisimpiä ovat esimerkiksi
float32,int32jastring. Tensorin tietotyypin saa selville.dtype-attribuutilla:
print(f'Data type of a tensor: {tensor.dtype}')
Tensorin akselit
Tensorien käyttökohteet
- Table Data
- Tekstijonot
- Numeeriset jaksot
- Kuvankäsittely
- Videonkäsittely
Erät
Tensorin luontimenetelmät
# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])
# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])
# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))
# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))
# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)
# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)
# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)
# Tensor of shape (2, 2) with random values normally distributed
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)
# Tensor of shape (2, 2) with random values uniformly distributed
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)
Muunnokset
- NumPy Tensoriksi
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])
# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
- Pandas Tensoriksi
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
- Vakio-tensorista muuttuja-tensoriksi
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)
# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))
Tietotyypit
# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)
# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)
Aritmetiikka
- Yhteenlasku
c1 = tf.add(a, b)
c2 = a + b
# Changes the object inplace without creating a new one
a.assign_add(b)
- Vähennyslasku
c1 = tf.subtract(a, b)
c2 = a - b
# Inplace substraction
a.assign_sub(b)
- Alkioittainen kertolasku
c1 = tf.multiply(a, b)
c2 = a * b
- Jakolasku
c1 = tf.divide(a, b)
c2 = a / b
Lähetys (Broadcasting)
Lineaarialgebra
- Matriisikertolasku
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
- Matriisin käänteismatriisi
inverse_mat = tf.linalg.inv(matrix)
- Transponointi
transposed = tf.transpose(matrix)
- Pistetulo
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)
Muodon muuttaminen (Reshape)
# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])
# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))
Viipalointi
# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))
# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))
Muokkaaminen viipaloinnilla
# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Change the entire first row
tensor[0, :].assign([0, 0, 0])
# Modify the second and the third columns
tensor[:, 1:3].assign(tf.fill((3,2), 1))
Yhdistäminen
# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])
# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)
# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)
Reduktio-operaatiot
# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)
# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)
# Determine the maximum value
max_val = tf.reduce_max(tensor)
# Find the minimum value
min_val = tf.reduce_min(tensor)
Gradient Tape
# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)
# Start recording the operations
with tf.GradientTape() as tape:
# Define the calculations
y = tf.reduce_sum(x * x + 2 * z)
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])
print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")
@tf.function
@tf.function
def compute_gradient_conditional(x):
with tf.GradientTape() as tape:
if tf.reduce_sum(x) > 0:
y = x * x
else:
y = x * x * x
return tape.gradient(y, x)
x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
Oliko kaikki selvää?
Kiitos palautteestasi!
Osio 2. Luku 5