Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Yhteenveto | TensorFlow:n Perusteet
Johdanto TensorFlow'hun

bookYhteenveto

Tämän kurssin keskeiset aiheet on tiivistetty alla. Yhteenvetomateriaali on ladattavissa tämän sivun lopussa.

TensorFlow-asennus

Asennus

pip install tensorflow

Tuonti

# Import the TensorFlow library with the alias tf
import tensorflow as tf

Tensorityypit

Yksinkertainen tensorin luonti

# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])

# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])

# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])

Tensorin ominaisuudet

  • Rakenne: kertoo tensorin ulottuvuuksien lukumäärän. Esimerkiksi matriisilla rakenne on 2. Tensorin rakenteen saa selville .ndim-attribuutilla:
print(f'Rank of a tensor: {tensor.ndim}')
  • Muoto: kuvaa, kuinka monta arvoa on kussakin ulottuvuudessa. 2x3-matriisin muoto on (2, 3). Muotoparametrin pituus vastaa tensorin rakennetta (sen ulottuvuuksien lukumäärää). Tensorin muodon saa selville .shape-attribuutilla:
print(f'Shape of a tensor: {tensor.shape}')
  • Tyypit: Tensorit voivat olla useissa eri tietotyypeissä. Yleisimpiä ovat esimerkiksi float32, int32 ja string. Tensorin tietotyypin saa selville .dtype-attribuutilla:
print(f'Data type of a tensor: {tensor.dtype}')

Tensorin akselit

Tensorien käyttökohteet

  • Table Data
  • Tekstijonot
  • Numeeriset jaksot
  • Kuvankäsittely
  • Videonkäsittely

Erät

Tensorin luontimenetelmät

# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])

# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])

# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))

# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))

# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)

# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)

# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)

# Tensor of shape (2, 2) with random values normally distributed 
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)

# Tensor of shape (2, 2) with random values uniformly distributed 
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)

Muunnokset

  • NumPy Tensoriksi
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])

# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
  • Pandas Tensoriksi
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})

# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
  • Vakio-tensorista muuttuja-tensoriksi
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)

# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))

Tietotyypit

# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)

# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)

Aritmetiikka

  • Yhteenlasku
c1 = tf.add(a, b)  
c2 = a + b

# Changes the object inplace without creating a new one
a.assign_add(b)
  • Vähennyslasku
c1 = tf.subtract(a, b)  
c2 = a - b 

# Inplace substraction
a.assign_sub(b)
  • Alkioittainen kertolasku
c1 = tf.multiply(a, b)  
c2 = a * b
  • Jakolasku
c1 = tf.divide(a, b)  
c2 = a / b 

Lähetys (Broadcasting)

Lineaarialgebra

  • Matriisikertolasku
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
  • Matriisin käänteismatriisi
inverse_mat = tf.linalg.inv(matrix)
  • Transponointi
transposed = tf.transpose(matrix)
  • Pistetulo
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)

Muodon muuttaminen (Reshape)

# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])

# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))

Viipalointi

# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))

# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))

Muokkaaminen viipaloinnilla

# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Change the entire first row 
tensor[0, :].assign([0, 0, 0])

# Modify the second and the third columns 
tensor[:, 1:3].assign(tf.fill((3,2), 1))

Yhdistäminen

# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])

# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)

# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)

Reduktio-operaatiot

# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)

# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)

# Determine the maximum value
max_val = tf.reduce_max(tensor)

# Find the minimum value
min_val = tf.reduce_min(tensor)

Gradient Tape

# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)

# Start recording the operations
with tf.GradientTape() as tape:
    # Define the calculations
    y = tf.reduce_sum(x * x + 2 * z)
    
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])

print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")

@tf.function

@tf.function
def compute_gradient_conditional(x):
    with tf.GradientTape() as tape:
        if tf.reduce_sum(x) > 0:
            y = x * x
        else:
            y = x * x * x
    return tape.gradient(y, x)

x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
question mark

Mikä on tappiollisen funktion rooli neuroverkossa?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 5

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Awesome!

Completion rate improved to 5.56

bookYhteenveto

Pyyhkäise näyttääksesi valikon

Tämän kurssin keskeiset aiheet on tiivistetty alla. Yhteenvetomateriaali on ladattavissa tämän sivun lopussa.

TensorFlow-asennus

Asennus

pip install tensorflow

Tuonti

# Import the TensorFlow library with the alias tf
import tensorflow as tf

Tensorityypit

Yksinkertainen tensorin luonti

# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])

# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])

# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])

Tensorin ominaisuudet

  • Rakenne: kertoo tensorin ulottuvuuksien lukumäärän. Esimerkiksi matriisilla rakenne on 2. Tensorin rakenteen saa selville .ndim-attribuutilla:
print(f'Rank of a tensor: {tensor.ndim}')
  • Muoto: kuvaa, kuinka monta arvoa on kussakin ulottuvuudessa. 2x3-matriisin muoto on (2, 3). Muotoparametrin pituus vastaa tensorin rakennetta (sen ulottuvuuksien lukumäärää). Tensorin muodon saa selville .shape-attribuutilla:
print(f'Shape of a tensor: {tensor.shape}')
  • Tyypit: Tensorit voivat olla useissa eri tietotyypeissä. Yleisimpiä ovat esimerkiksi float32, int32 ja string. Tensorin tietotyypin saa selville .dtype-attribuutilla:
print(f'Data type of a tensor: {tensor.dtype}')

Tensorin akselit

Tensorien käyttökohteet

  • Table Data
  • Tekstijonot
  • Numeeriset jaksot
  • Kuvankäsittely
  • Videonkäsittely

Erät

Tensorin luontimenetelmät

# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])

# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])

# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))

# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))

# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)

# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)

# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)

# Tensor of shape (2, 2) with random values normally distributed 
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)

# Tensor of shape (2, 2) with random values uniformly distributed 
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)

Muunnokset

  • NumPy Tensoriksi
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])

# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
  • Pandas Tensoriksi
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})

# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
  • Vakio-tensorista muuttuja-tensoriksi
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)

# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))

Tietotyypit

# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)

# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)

Aritmetiikka

  • Yhteenlasku
c1 = tf.add(a, b)  
c2 = a + b

# Changes the object inplace without creating a new one
a.assign_add(b)
  • Vähennyslasku
c1 = tf.subtract(a, b)  
c2 = a - b 

# Inplace substraction
a.assign_sub(b)
  • Alkioittainen kertolasku
c1 = tf.multiply(a, b)  
c2 = a * b
  • Jakolasku
c1 = tf.divide(a, b)  
c2 = a / b 

Lähetys (Broadcasting)

Lineaarialgebra

  • Matriisikertolasku
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
  • Matriisin käänteismatriisi
inverse_mat = tf.linalg.inv(matrix)
  • Transponointi
transposed = tf.transpose(matrix)
  • Pistetulo
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)

Muodon muuttaminen (Reshape)

# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])

# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))

Viipalointi

# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))

# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))

Muokkaaminen viipaloinnilla

# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Change the entire first row 
tensor[0, :].assign([0, 0, 0])

# Modify the second and the third columns 
tensor[:, 1:3].assign(tf.fill((3,2), 1))

Yhdistäminen

# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])

# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)

# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)

Reduktio-operaatiot

# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)

# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)

# Determine the maximum value
max_val = tf.reduce_max(tensor)

# Find the minimum value
min_val = tf.reduce_min(tensor)

Gradient Tape

# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)

# Start recording the operations
with tf.GradientTape() as tape:
    # Define the calculations
    y = tf.reduce_sum(x * x + 2 * z)
    
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])

print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")

@tf.function

@tf.function
def compute_gradient_conditional(x):
    with tf.GradientTape() as tape:
        if tf.reduce_sum(x) > 0:
            y = x * x
        else:
            y = x * x * x
    return tape.gradient(y, x)

x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
question mark

Mikä on tappiollisen funktion rooli neuroverkossa?

Select the correct answer

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 5
some-alt