Tensorin Ominaisuudet
Tensorin ominaisuudet
Tensoreilla on erityisiä ominaisuuksia, jotka määrittävät niiden rakenteen sekä tavan käsitellä ja tallentaa tietoa.
- Rakenneaste (Rank): ilmaisee tensorin ulottuvuuksien lukumäärän. Esimerkiksi matriisilla rakenneaste on 2. Tensorin rakenneasteen voi tarkistaa
.ndim
-attribuutilla:
1234567891011121314151617import tensorflow as tf # Create tensors tensor_1D = tf.constant([1, 2, 3]) tensor_2D = tf.constant([ [1, 2], [3, 4] ]) tensor_3D = tf.constant([ [[1, 2], [3, 4]], [[5, 6], [7, 8]] ]) # Get ranks print(f'Rank of 1D tensor: {tensor_1D.ndim}') print(f'Rank of 2D tensor: {tensor_2D.ndim}') print(f'Rank of 3D tensor: {tensor_3D.ndim}')
Python-listojen määrittely on jäsennelty usealle riville selkeyden vuoksi. Yhdistäminen yhdelle riville osoittaa, että toiminnallisuus säilyy samana.
- Muoto (Shape): kuvaa arvojen määrän jokaisessa ulottuvuudessa. 2x3-matriisin muoto on
(2, 3)
. Muotoparametrin pituus vastaa tensorin astetta (sen ulottuvuuksien lukumäärää). Tensorin muodon saa selville.shape
-attribuutilla:
123456789101112131415161718import tensorflow as tf # Create tensors tensor_1D = tf.constant([1, 2, 3, 4]) tensor_2D = tf.constant([ [1, 2, 3], [4, 5, 6] ]) tensor_3D = tf.constant([ [[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]], [[13, 14, 15], [16, 17, 18]] ]) # Get shapes print(f'Shape of 1D tensor: {tensor_1D.shape}') print(f'Shape of 2D tensor: {tensor_2D.shape}') print(f'Shape of 3D tensor: {tensor_3D.shape}')
Tensoreiden muotojen ja arvojen oikeellisuus on olennaista syväoppimisessa. Ulottuvuuksien yhteensopimattomuudet ovat yleisiä sudenkuoppia, erityisesti rakennettaessa monimutkaisia malleja TensorFlow'ssa.
- Tyypit: tensorit voivat olla useissa eri tietotyypeissä. Vaikka vaihtoehtoja on monia, yleisimpiä ovat
float32
,int32
jastring
. Käsittelemme tensorien tietotyyppejä tarkemmin tulevissa luvuissa. Tietotyypin voi tarkistaa tensorin.dtype
-attribuutilla:
1234567891011import tensorflow as tf # Create tensors tensor_int = tf.constant([1, 2, 3, 4]) tensor_float = tf.constant([1., 2., 3., 4.]) tensor_string = tf.constant(['a', 'b', 'c', 'd']) # Get data type print(f'Data type of 1D tensor: {tensor_int.dtype}') print(f'Data type of 2D tensor: {tensor_float.dtype}') print(f'Data type of 3D tensor: {tensor_string.dtype}')
Tensoriaineiston tietotyyppi määräytyy sisällön perusteella. On olennaista, että kaikki tensorin alkiot ovat samaa tyyppiä.
- Akselit: akselit auttavat navigoimaan tensorien ulottuvuuksissa. Määrittämällä akselin voit kohdistaa tietyn kerroksen tai suunnan tensorissa, mikä helpottaa datan käsittelyä ja ymmärtämistä. Akselit vastaavat suoraan muodon ulottuvuuksia. Jokainen akseli vastaa tiettyä muotoarvoa, jolloin 0. akseli vastaa ensimmäistä muotoarvoa, 1. akseli toista ja niin edelleen.
Swipe to start coding
Tässä tehtävässä sinulle annetaan kaksi tensoria. Ensimmäinen tensori on jo luotu valmiiksi; tehtävänäsi on näyttää sen ominaisuudet hyödyntämällä tensorin olennaisia attribuutteja. Toisen tensorin osalta sinun tulee luoda se itse seuraavien määrittelyjen mukaisesti:
- Rakenne (rank):
3
. - Muoto (shape):
(2, 4, 3)
. - Datan tyyppi:
float
.
Toimi seuraavasti:
- Hae ensimmäisen tensorin ominaisuudet.
- Rakenna tensori, joka täyttää annetut kriteerit.
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Awesome!
Completion rate improved to 5.56
Tensorin Ominaisuudet
Pyyhkäise näyttääksesi valikon
Tensorin ominaisuudet
Tensoreilla on erityisiä ominaisuuksia, jotka määrittävät niiden rakenteen sekä tavan käsitellä ja tallentaa tietoa.
- Rakenneaste (Rank): ilmaisee tensorin ulottuvuuksien lukumäärän. Esimerkiksi matriisilla rakenneaste on 2. Tensorin rakenneasteen voi tarkistaa
.ndim
-attribuutilla:
1234567891011121314151617import tensorflow as tf # Create tensors tensor_1D = tf.constant([1, 2, 3]) tensor_2D = tf.constant([ [1, 2], [3, 4] ]) tensor_3D = tf.constant([ [[1, 2], [3, 4]], [[5, 6], [7, 8]] ]) # Get ranks print(f'Rank of 1D tensor: {tensor_1D.ndim}') print(f'Rank of 2D tensor: {tensor_2D.ndim}') print(f'Rank of 3D tensor: {tensor_3D.ndim}')
Python-listojen määrittely on jäsennelty usealle riville selkeyden vuoksi. Yhdistäminen yhdelle riville osoittaa, että toiminnallisuus säilyy samana.
- Muoto (Shape): kuvaa arvojen määrän jokaisessa ulottuvuudessa. 2x3-matriisin muoto on
(2, 3)
. Muotoparametrin pituus vastaa tensorin astetta (sen ulottuvuuksien lukumäärää). Tensorin muodon saa selville.shape
-attribuutilla:
123456789101112131415161718import tensorflow as tf # Create tensors tensor_1D = tf.constant([1, 2, 3, 4]) tensor_2D = tf.constant([ [1, 2, 3], [4, 5, 6] ]) tensor_3D = tf.constant([ [[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]], [[13, 14, 15], [16, 17, 18]] ]) # Get shapes print(f'Shape of 1D tensor: {tensor_1D.shape}') print(f'Shape of 2D tensor: {tensor_2D.shape}') print(f'Shape of 3D tensor: {tensor_3D.shape}')
Tensoreiden muotojen ja arvojen oikeellisuus on olennaista syväoppimisessa. Ulottuvuuksien yhteensopimattomuudet ovat yleisiä sudenkuoppia, erityisesti rakennettaessa monimutkaisia malleja TensorFlow'ssa.
- Tyypit: tensorit voivat olla useissa eri tietotyypeissä. Vaikka vaihtoehtoja on monia, yleisimpiä ovat
float32
,int32
jastring
. Käsittelemme tensorien tietotyyppejä tarkemmin tulevissa luvuissa. Tietotyypin voi tarkistaa tensorin.dtype
-attribuutilla:
1234567891011import tensorflow as tf # Create tensors tensor_int = tf.constant([1, 2, 3, 4]) tensor_float = tf.constant([1., 2., 3., 4.]) tensor_string = tf.constant(['a', 'b', 'c', 'd']) # Get data type print(f'Data type of 1D tensor: {tensor_int.dtype}') print(f'Data type of 2D tensor: {tensor_float.dtype}') print(f'Data type of 3D tensor: {tensor_string.dtype}')
Tensoriaineiston tietotyyppi määräytyy sisällön perusteella. On olennaista, että kaikki tensorin alkiot ovat samaa tyyppiä.
- Akselit: akselit auttavat navigoimaan tensorien ulottuvuuksissa. Määrittämällä akselin voit kohdistaa tietyn kerroksen tai suunnan tensorissa, mikä helpottaa datan käsittelyä ja ymmärtämistä. Akselit vastaavat suoraan muodon ulottuvuuksia. Jokainen akseli vastaa tiettyä muotoarvoa, jolloin 0. akseli vastaa ensimmäistä muotoarvoa, 1. akseli toista ja niin edelleen.
Swipe to start coding
Tässä tehtävässä sinulle annetaan kaksi tensoria. Ensimmäinen tensori on jo luotu valmiiksi; tehtävänäsi on näyttää sen ominaisuudet hyödyntämällä tensorin olennaisia attribuutteja. Toisen tensorin osalta sinun tulee luoda se itse seuraavien määrittelyjen mukaisesti:
- Rakenne (rank):
3
. - Muoto (shape):
(2, 4, 3)
. - Datan tyyppi:
float
.
Toimi seuraavasti:
- Hae ensimmäisen tensorin ominaisuudet.
- Rakenna tensori, joka täyttää annetut kriteerit.
Ratkaisu
Kiitos palautteestasi!
single