Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Yksisuuntainen ja Kaksisuuntainen Testi | Tilastollinen Testaaminen
Tilastotiede Pythonilla

bookYksisuuntainen ja Kaksisuuntainen Testi

Kun nollahypoteesi on tosi, t-tilasto noudattaa t-jakaumaa.

t-jakauma muistuttaa normaalijakaumaa. Todennäköisyys saada arvo lähellä nollaa on erittäin suuri, kun taas todennäköisyys saada arvo kaukana nollasta on pieni. Jos nollahypoteesi on tosi, on hyvin epätodennäköistä saada t-arvo, joka on kaukana nollasta. Jos näin tapahtuu, nollahypoteesi hylätään ja vaihtoehtoinen hypoteesi hyväksytään.

Kriittinen alue

Punaisella korostettu alue on kriittinen alue (tai hylkäysalue). Kun t-tilasto osuu tälle kriittiselle alueelle, nollahypoteesi hylätään ja vaihtoehtoinen hypoteesi hyväksytään.

Kriittinen alue valitaan siten, että todennäköisyys t-tilaston osumiselle siihen vastaa merkitsevyystasoa, joka on tyypillisesti α (yleensä 0,05).

Yksisuuntainen vs kaksisuuntainen testi

Vaihtoehtoisen hypoteesin mukaan kriittinen alue voidaan määrittää kahdella tavalla.

  • Kaksisuuntaista testiä käytetään, kun vaihtoehtoinen hypoteesi on "Keskiarvot eivät ole yhtä suuret.";
  • Yksisuuntaista testiä käytetään, kun vaihtoehtoinen hypoteesi on "Toinen keskiarvo on suurempi (pienempi) kuin toinen."

Esimerkki

Jos miesten ja naisten pituuksien vertailussa laskettu t-tilasto on 19,1, se osuu kriittiselle alueelle. Tämän perusteella voidaan päätellä, että miehet ovat tilastollisesti merkitsevästi pidempiä kuin naiset.

Tässä esimerkissä kaikki arvot, jotka ovat suurempia kuin 1,65, kuuluvat kriittiselle alueelle. Tätä kutsutaan kriittiseksi arvoksi. Kriittiseen arvoon vaikuttavat otoskoot, mutta sinun ei tarvitse huolehtia siitä. Python laskee sekä kriittisen arvon että t-tilastollisen arvon puolestasi.

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 6. Luku 4

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

Suggested prompts:

Can you explain how to interpret the t-distribution graph?

What is the difference between a one-tailed and two-tailed test?

How is the critical value determined in hypothesis testing?

Awesome!

Completion rate improved to 2.63

bookYksisuuntainen ja Kaksisuuntainen Testi

Pyyhkäise näyttääksesi valikon

Kun nollahypoteesi on tosi, t-tilasto noudattaa t-jakaumaa.

t-jakauma muistuttaa normaalijakaumaa. Todennäköisyys saada arvo lähellä nollaa on erittäin suuri, kun taas todennäköisyys saada arvo kaukana nollasta on pieni. Jos nollahypoteesi on tosi, on hyvin epätodennäköistä saada t-arvo, joka on kaukana nollasta. Jos näin tapahtuu, nollahypoteesi hylätään ja vaihtoehtoinen hypoteesi hyväksytään.

Kriittinen alue

Punaisella korostettu alue on kriittinen alue (tai hylkäysalue). Kun t-tilasto osuu tälle kriittiselle alueelle, nollahypoteesi hylätään ja vaihtoehtoinen hypoteesi hyväksytään.

Kriittinen alue valitaan siten, että todennäköisyys t-tilaston osumiselle siihen vastaa merkitsevyystasoa, joka on tyypillisesti α (yleensä 0,05).

Yksisuuntainen vs kaksisuuntainen testi

Vaihtoehtoisen hypoteesin mukaan kriittinen alue voidaan määrittää kahdella tavalla.

  • Kaksisuuntaista testiä käytetään, kun vaihtoehtoinen hypoteesi on "Keskiarvot eivät ole yhtä suuret.";
  • Yksisuuntaista testiä käytetään, kun vaihtoehtoinen hypoteesi on "Toinen keskiarvo on suurempi (pienempi) kuin toinen."

Esimerkki

Jos miesten ja naisten pituuksien vertailussa laskettu t-tilasto on 19,1, se osuu kriittiselle alueelle. Tämän perusteella voidaan päätellä, että miehet ovat tilastollisesti merkitsevästi pidempiä kuin naiset.

Tässä esimerkissä kaikki arvot, jotka ovat suurempia kuin 1,65, kuuluvat kriittiselle alueelle. Tätä kutsutaan kriittiseksi arvoksi. Kriittiseen arvoon vaikuttavat otoskoot, mutta sinun ei tarvitse huolehtia siitä. Python laskee sekä kriittisen arvon että t-tilastollisen arvon puolestasi.

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 6. Luku 4
some-alt