Monimuuttujaisen Lineaarisen Regressiomallin Rakentaminen
OLS
-luokka mahdollistaa moninkertaisen lineaarisen regressiomallin rakentamisen samalla tavalla kuin yksinkertaisen lineaarisen regressiomallin. Valitettavasti np.polyfit()
-funktio ei kuitenkaan tue usean muuttujan tapausta.
Käytämme siis OLS
-luokkaa.
X̃-matriisin rakentaminen
Meillä on sama aineisto kuin yksinkertaisen lineaarisen regressiomallin esimerkissä, mutta nyt mukana on äidin pituus toisena muuttujana. Lataamme aineiston ja tarkastelemme sen X
-muuttujaa:
123456789import pandas as pd import statsmodels.api as sm file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file # Assign the variables X = df[['Father', 'Mother']] y = df['Height'] print(X.head())
Muista, että meidän tulisi käyttää OLS(y, X_tilde)
alustamaan OLS
-objekti. Kuten huomaat, X-muuttuja sisältää jo kaksi ominaisuutta erillisissä sarakkeissa. Jotta saadaan X_tilde, tarvitsee vain lisätä 1:t ensimmäiseksi sarakkeeksi. Funktio sm.add_constant(X)
tekee juuri tämän!
1234567891011import pandas as pd import statsmodels.api as sm file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file # Assign the variables X = df[['Father', 'Mother']] y = df['Height'] # Create X_tilde X_tilde = sm.add_constant(X) print(X_tilde.head())
Parametrien löytäminen
Hienoa! Nyt voimme rakentaa mallin, löytää parametrit ja tehdä ennusteita samalla tavalla kuin edellisessä osiossa.
12345678910111213141516171819202122import pandas as pd import statsmodels.api as sm import numpy as np file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file X,y = df[['Father', 'Mother']], df['Height'] # Assign the variables X_tilde = sm.add_constant(X) # Create X_tilde # Initialize an OLS object regression_model = sm.OLS(y, X_tilde) # Train the object regression_model = regression_model.fit() # Get the paramters beta_0, beta_1, beta_2 = regression_model.params print('beta_0 is: ', beta_0) print('beta_1 is: ', beta_1) print('beta_2 is: ', beta_2) # Predict new values X_new = np.array([[65, 62],[70, 65],[75, 70]]) # Feature values of new instances X_new_tilde = sm.add_constant(X_new) # Preprocess X_new y_pred = regression_model.predict(X_new_tilde) # Predict the target print('Predictions:', y_pred)
Nyt kun opetusjoukossamme on 2 piirrettä, meidän täytyy antaa 2 piirre-arvoa jokaiselle uudelle havainnolle, jolle haluamme tehdä ennusteen. Siksi esimerkissä yllä käytettiin np.array([[65, 62],[70, 65],[75, 70]])
. Se ennustaa y
kolmelle uudelle havainnolle: [Father:65,Mother:62]
, [Father:70, Mother:65]
, [Father:75, Mother:70]
.
Kiitos palautteestasi!
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Kysy minulta kysymyksiä tästä aiheesta
Tiivistä tämä luku
Näytä käytännön esimerkkejä
Awesome!
Completion rate improved to 5.26
Monimuuttujaisen Lineaarisen Regressiomallin Rakentaminen
Pyyhkäise näyttääksesi valikon
OLS
-luokka mahdollistaa moninkertaisen lineaarisen regressiomallin rakentamisen samalla tavalla kuin yksinkertaisen lineaarisen regressiomallin. Valitettavasti np.polyfit()
-funktio ei kuitenkaan tue usean muuttujan tapausta.
Käytämme siis OLS
-luokkaa.
X̃-matriisin rakentaminen
Meillä on sama aineisto kuin yksinkertaisen lineaarisen regressiomallin esimerkissä, mutta nyt mukana on äidin pituus toisena muuttujana. Lataamme aineiston ja tarkastelemme sen X
-muuttujaa:
123456789import pandas as pd import statsmodels.api as sm file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file # Assign the variables X = df[['Father', 'Mother']] y = df['Height'] print(X.head())
Muista, että meidän tulisi käyttää OLS(y, X_tilde)
alustamaan OLS
-objekti. Kuten huomaat, X-muuttuja sisältää jo kaksi ominaisuutta erillisissä sarakkeissa. Jotta saadaan X_tilde, tarvitsee vain lisätä 1:t ensimmäiseksi sarakkeeksi. Funktio sm.add_constant(X)
tekee juuri tämän!
1234567891011import pandas as pd import statsmodels.api as sm file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file # Assign the variables X = df[['Father', 'Mother']] y = df['Height'] # Create X_tilde X_tilde = sm.add_constant(X) print(X_tilde.head())
Parametrien löytäminen
Hienoa! Nyt voimme rakentaa mallin, löytää parametrit ja tehdä ennusteita samalla tavalla kuin edellisessä osiossa.
12345678910111213141516171819202122import pandas as pd import statsmodels.api as sm import numpy as np file_link='https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/heights_two_feature.csv' df = pd.read_csv(file_link) # Open the file X,y = df[['Father', 'Mother']], df['Height'] # Assign the variables X_tilde = sm.add_constant(X) # Create X_tilde # Initialize an OLS object regression_model = sm.OLS(y, X_tilde) # Train the object regression_model = regression_model.fit() # Get the paramters beta_0, beta_1, beta_2 = regression_model.params print('beta_0 is: ', beta_0) print('beta_1 is: ', beta_1) print('beta_2 is: ', beta_2) # Predict new values X_new = np.array([[65, 62],[70, 65],[75, 70]]) # Feature values of new instances X_new_tilde = sm.add_constant(X_new) # Preprocess X_new y_pred = regression_model.predict(X_new_tilde) # Predict the target print('Predictions:', y_pred)
Nyt kun opetusjoukossamme on 2 piirrettä, meidän täytyy antaa 2 piirre-arvoa jokaiselle uudelle havainnolle, jolle haluamme tehdä ennusteen. Siksi esimerkissä yllä käytettiin np.array([[65, 62],[70, 65],[75, 70]])
. Se ennustaa y
kolmelle uudelle havainnolle: [Father:65,Mother:62]
, [Father:70, Mother:65]
, [Father:75, Mother:70]
.
Kiitos palautteestasi!