Challenge: ARIMA Forecasting and Evaluation
Swipe to start coding
You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.
Perform the following steps:
-
Load the dataset
flightsfrom seaborn and extract the"passengers"series as a time series indexed by month. -
Split the data into:
- Training set → all data except the last 12 months
- Testing set → last 12 months
-
Fit an ARIMA(2,1,2) model on the training set using
statsmodels.tsa.arima.model.ARIMA. -
Forecast the next 12 months.
-
Compute and print the following metrics between the forecast and the actual test values:
- Mean Absolute Error (MAE)
- Root Mean Squared Error (RMSE)
-
Plot:
- The original series
- The forecasted values over the test range.
Ratkaisu
Kiitos palautteestasi!
single
Kysy tekoälyä
Kysy tekoälyä
Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme
Awesome!
Completion rate improved to 6.67
Challenge: ARIMA Forecasting and Evaluation
Pyyhkäise näyttääksesi valikon
Swipe to start coding
You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.
Perform the following steps:
-
Load the dataset
flightsfrom seaborn and extract the"passengers"series as a time series indexed by month. -
Split the data into:
- Training set → all data except the last 12 months
- Testing set → last 12 months
-
Fit an ARIMA(2,1,2) model on the training set using
statsmodels.tsa.arima.model.ARIMA. -
Forecast the next 12 months.
-
Compute and print the following metrics between the forecast and the actual test values:
- Mean Absolute Error (MAE)
- Root Mean Squared Error (RMSE)
-
Plot:
- The original series
- The forecasted values over the test range.
Ratkaisu
Kiitos palautteestasi!
single