Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Clean Sales Data | Business Data Manipulation
Python for Business Analysts

bookChallenge: Clean Sales Data

Data cleaning is a foundational step in business data analysis. Without careful cleaning, your analyses may be skewed by missing values or inconsistent formatting, leading to inaccurate insights and decisions. For business analysts, ensuring that sales records are complete and standardized—such as by filling in missing sales numbers and making product names consistent—is essential for producing reliable reports and recommendations. Small inconsistencies, like varying capitalization or blank fields, can have a significant impact when aggregating or comparing data across products and periods. By mastering these cleaning techniques, you set the stage for more advanced analysis and trustworthy business intelligence.

Tehtävä

Swipe to start coding

You are given a list of sales records, each as a dictionary with keys 'date', 'product', 'units_sold', and 'revenue'. Some records may have missing values (None) for 'units_sold' or 'revenue', and product names may use inconsistent capitalization. Your function must:

  • Replace any missing 'units_sold' or 'revenue' values with 0.
  • Standardize all 'product' names to title case (first letter uppercase, others lowercase).
  • Return a new list of cleaned records.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 3
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

close

bookChallenge: Clean Sales Data

Pyyhkäise näyttääksesi valikon

Data cleaning is a foundational step in business data analysis. Without careful cleaning, your analyses may be skewed by missing values or inconsistent formatting, leading to inaccurate insights and decisions. For business analysts, ensuring that sales records are complete and standardized—such as by filling in missing sales numbers and making product names consistent—is essential for producing reliable reports and recommendations. Small inconsistencies, like varying capitalization or blank fields, can have a significant impact when aggregating or comparing data across products and periods. By mastering these cleaning techniques, you set the stage for more advanced analysis and trustworthy business intelligence.

Tehtävä

Swipe to start coding

You are given a list of sales records, each as a dictionary with keys 'date', 'product', 'units_sold', and 'revenue'. Some records may have missing values (None) for 'units_sold' or 'revenue', and product names may use inconsistent capitalization. Your function must:

  • Replace any missing 'units_sold' or 'revenue' values with 0.
  • Standardize all 'product' names to title case (first letter uppercase, others lowercase).
  • Return a new list of cleaned records.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 3
single

single

some-alt