Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Simulate Projectile Motion | Dynamics and System Simulation
Python for Mechanical Engineers

bookChallenge: Simulate Projectile Motion

Simulating projectile motion is a classic dynamics problem. Automating this with Python helps visualize and analyze trajectories. By modeling a projectile launched at an angle with a given initial velocity, you can predict its path using fundamental physics equations. This approach is valuable for understanding motion, optimizing launch parameters, and visualizing results for engineering applications.

Tehtävä

Swipe to start coding

Implement a function that simulates the 2D trajectory of a projectile. The function should:

  • Accept initial velocity (v0), launch angle in degrees (angle_deg), and time step (dt) as arguments.
  • Calculate the x and y positions at each time increment until the projectile lands (when y becomes negative).
  • Return two lists: one for all x positions and one for all y positions.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 3
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

close

bookChallenge: Simulate Projectile Motion

Pyyhkäise näyttääksesi valikon

Simulating projectile motion is a classic dynamics problem. Automating this with Python helps visualize and analyze trajectories. By modeling a projectile launched at an angle with a given initial velocity, you can predict its path using fundamental physics equations. This approach is valuable for understanding motion, optimizing launch parameters, and visualizing results for engineering applications.

Tehtävä

Swipe to start coding

Implement a function that simulates the 2D trajectory of a projectile. The function should:

  • Accept initial velocity (v0), launch angle in degrees (angle_deg), and time step (dt) as arguments.
  • Calculate the x and y positions at each time increment until the projectile lands (when y becomes negative).
  • Return two lists: one for all x positions and one for all y positions.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 3
single

single

some-alt