Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Compare Ridge and Lasso on Real Data | Regularization Fundamentals
Feature Selection and Regularization Techniques

bookChallenge: Compare Ridge and Lasso on Real Data

Tehtävä

Swipe to start coding

In this challenge, you will compare Ridge and Lasso regression on a real dataset to see how regularization strength affects model performance and coefficient magnitudes.

You will use the Diabetes dataset from scikit-learn, which is a standard regression dataset with 10 input features and a continuous target variable.

Your goals are:

  1. Load the dataset and split it into training and testing sets (70% / 30%).
  2. Fit two models:
    • A Ridge regression model with alpha=1.0
    • A Lasso regression model with alpha=0.1
  3. Evaluate both models using R² score and Mean Squared Error (MSE) on the test set.
  4. Compare their coefficients to observe how Lasso drives some coefficients toward zero (feature selection effect).
  5. Print the metrics and model coefficients for each model.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 4
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Compare Ridge and Lasso on Real Data

Pyyhkäise näyttääksesi valikon

Tehtävä

Swipe to start coding

In this challenge, you will compare Ridge and Lasso regression on a real dataset to see how regularization strength affects model performance and coefficient magnitudes.

You will use the Diabetes dataset from scikit-learn, which is a standard regression dataset with 10 input features and a continuous target variable.

Your goals are:

  1. Load the dataset and split it into training and testing sets (70% / 30%).
  2. Fit two models:
    • A Ridge regression model with alpha=1.0
    • A Lasso regression model with alpha=0.1
  3. Evaluate both models using R² score and Mean Squared Error (MSE) on the test set.
  4. Compare their coefficients to observe how Lasso drives some coefficients toward zero (feature selection effect).
  5. Print the metrics and model coefficients for each model.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 1. Luku 4
single

single

some-alt