Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Unsupervised Metrics | Unsupervised Learning Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Unsupervised Metrics

Tehtävä

Swipe to start coding

You will perform a full unsupervised model evaluation pipeline, consisting of anomaly detection, dimensionality reduction, and clustering.

Perform the following steps:

1. Anomaly Detection Evaluation

  • Use the make_classification dataset from scikit-learn with strong class imbalance (weights=[0.95, 0.05]).
  • Train an IsolationForest model to detect anomalies.
  • Compute:
    • Precision.
    • Recall.
    • ROC–AUC.

2. Dimensionality Reduction Evaluation

  • Apply PCA to the dataset (2 components).
  • Compute:
    • Explained Variance Ratio.
    • Reconstruction Error between original and inverse-transformed data.

3. Clustering Evaluation

  • Apply KMeans with n_clusters=3 on the PCA-reduced data.
  • Compute:
    • Inertia.
    • Silhouette Score.
    • Davies–Bouldin Score.
    • Calinski–Harabasz Score.

Ratkaisu

Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 5
single

single

Kysy tekoälyä

expand

Kysy tekoälyä

ChatGPT

Kysy mitä tahansa tai kokeile jotakin ehdotetuista kysymyksistä aloittaaksesi keskustelumme

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Unsupervised Metrics

Pyyhkäise näyttääksesi valikon

Tehtävä

Swipe to start coding

You will perform a full unsupervised model evaluation pipeline, consisting of anomaly detection, dimensionality reduction, and clustering.

Perform the following steps:

1. Anomaly Detection Evaluation

  • Use the make_classification dataset from scikit-learn with strong class imbalance (weights=[0.95, 0.05]).
  • Train an IsolationForest model to detect anomalies.
  • Compute:
    • Precision.
    • Recall.
    • ROC–AUC.

2. Dimensionality Reduction Evaluation

  • Apply PCA to the dataset (2 components).
  • Compute:
    • Explained Variance Ratio.
    • Reconstruction Error between original and inverse-transformed data.

3. Clustering Evaluation

  • Apply KMeans with n_clusters=3 on the PCA-reduced data.
  • Compute:
    • Inertia.
    • Silhouette Score.
    • Davies–Bouldin Score.
    • Calinski–Harabasz Score.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 3. Luku 5
single

single

some-alt