Replace Missing Values with Interpolation
Another approach to deal with numerical data is using interpolation. Each NaN value will be replaced with the result of interpolation between the previous and the next entry over the column. Let's apply the interpolate()
function to numeric column Age
by setting the limit direction to forward. This means that linear interpolation is applied from the first line to the last.
1data = data.interpolate(method = 'linear', limit_direction = 'forward')
Swipe to start coding
Fill the empty places in the code. Compare the data in Age
column before and after using interpolation (look at the last 10 rows).
Solution
Merci pour vos commentaires !
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Résumer ce chapitre
Expliquer le code dans file
Expliquer pourquoi file ne résout pas la tâche
Awesome!
Completion rate improved to 5.56
Replace Missing Values with Interpolation
Glissez pour afficher le menu
Another approach to deal with numerical data is using interpolation. Each NaN value will be replaced with the result of interpolation between the previous and the next entry over the column. Let's apply the interpolate()
function to numeric column Age
by setting the limit direction to forward. This means that linear interpolation is applied from the first line to the last.
1data = data.interpolate(method = 'linear', limit_direction = 'forward')
Swipe to start coding
Fill the empty places in the code. Compare the data in Age
column before and after using interpolation (look at the last 10 rows).
Solution
Merci pour vos commentaires !
Awesome!
Completion rate improved to 5.56single