Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Explore the Dataset | Data Exploration
Preprocessing Data
course content

Kursusindhold

Preprocessing Data

Preprocessing Data

1. Data Exploration
2. Data Cleaning
3. Data Validation
4. Normalization & Standardization
5. Data Encoding

book
Explore the Dataset

Before you start, it's important to take a look at the data you'll work with. There is a list of useful methods which can be applied to the pandas dataframes:

123456789101112131415161718192021
# info about the dataframe shape, data types data.info() # the size of the dataframe data.shape # list of the columns data.columns # returns all distinct values containing in the column called ColumnName data['ColumnName'].unique() # returns the metrics: mean, mode, min, max etc. data.describe() # returns top 5 rows data.head() # returns top 10 rows (or any other number you'll pass) data.head(10) # returns bottom 5 rows data.tail() # returns bottom 10 rows (or any other number) data.tail(10) # returns 10 random rows data.sample(10)
copy
Opgave

Swipe to start coding

For given dataset data, extract and print 5 rows using sample() function.

Find all the columns' names and put them to the cols variable.

Find the unique values for each column and output these values.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 2
toggle bottom row

book
Explore the Dataset

Before you start, it's important to take a look at the data you'll work with. There is a list of useful methods which can be applied to the pandas dataframes:

123456789101112131415161718192021
# info about the dataframe shape, data types data.info() # the size of the dataframe data.shape # list of the columns data.columns # returns all distinct values containing in the column called ColumnName data['ColumnName'].unique() # returns the metrics: mean, mode, min, max etc. data.describe() # returns top 5 rows data.head() # returns top 10 rows (or any other number you'll pass) data.head(10) # returns bottom 5 rows data.tail() # returns bottom 10 rows (or any other number) data.tail(10) # returns 10 random rows data.sample(10)
copy
Opgave

Swipe to start coding

For given dataset data, extract and print 5 rows using sample() function.

Find all the columns' names and put them to the cols variable.

Find the unique values for each column and output these values.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 2
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt