Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre What is a Hierarchical Clustering? | Hierarchical Clustering
Cluster Analysis in Python
course content

Contenu du cours

Cluster Analysis in Python

Cluster Analysis in Python

1. K-Means Algorithm
2. K-Medoids Algorithm
3. Hierarchical Clustering
4. Spectral Clustering

book
What is a Hierarchical Clustering?

In this section, we will consider the hierarchical clustering - one more clustering algorithm.

How does this algorithm work? We will consider the AGNES (Agglomerative Nesting clustering) algorithm. It can be called a bottom-up approach since, in the beginning, all the points are in separate clusters. Then, some clusters are joined based on linkages, until all the necessary number of clusters will be reached.

In Python, the Hierarchical clustering algorithm is implemented within the AgglomerativeClustering function from the sklearn.cluster library. Unlike in the two previous sections, to predict the labels there you need to use the .fit_predict method with data as a parameter. Let's rewrite the necessary actions step by step:

  1. Create an AgglomerativeClustering model object with a necessary number of clusters (n_clusters) and parameters set (will be considered in the next chapters).
  2. Fit the data and predict the labels using the .fit_predict() function passing data as the parameter.

Agglomerative Clustering has many parameters, among them are n_clusters (as in the previous sections), linkage, affinity, and so on... We will consider them in future chapters.

Tâche

Swipe to start coding

Given the 2-D dataset of points (training dataset). The scatter plot is shown below.

Plot

You need to perform a Hierarchical Clustering for this data. Follow the next steps:

  1. Import AgglomerativeClustering function from sklearn.cluster.
  2. Create AgglomerativeClustering object model with 3 clusters.
  3. Apply .fit_predict() method to model with data as a parameter. Add the result as 'prediction' column to data.
  4. Build a scatter plot of data with 'x' column on the x-axis, 'y' column on the y-axis, and each point colored with respect to the 'prediction' column.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 1
toggle bottom row

book
What is a Hierarchical Clustering?

In this section, we will consider the hierarchical clustering - one more clustering algorithm.

How does this algorithm work? We will consider the AGNES (Agglomerative Nesting clustering) algorithm. It can be called a bottom-up approach since, in the beginning, all the points are in separate clusters. Then, some clusters are joined based on linkages, until all the necessary number of clusters will be reached.

In Python, the Hierarchical clustering algorithm is implemented within the AgglomerativeClustering function from the sklearn.cluster library. Unlike in the two previous sections, to predict the labels there you need to use the .fit_predict method with data as a parameter. Let's rewrite the necessary actions step by step:

  1. Create an AgglomerativeClustering model object with a necessary number of clusters (n_clusters) and parameters set (will be considered in the next chapters).
  2. Fit the data and predict the labels using the .fit_predict() function passing data as the parameter.

Agglomerative Clustering has many parameters, among them are n_clusters (as in the previous sections), linkage, affinity, and so on... We will consider them in future chapters.

Tâche

Swipe to start coding

Given the 2-D dataset of points (training dataset). The scatter plot is shown below.

Plot

You need to perform a Hierarchical Clustering for this data. Follow the next steps:

  1. Import AgglomerativeClustering function from sklearn.cluster.
  2. Create AgglomerativeClustering object model with 3 clusters.
  3. Apply .fit_predict() method to model with data as a parameter. Add the result as 'prediction' column to data.
  4. Build a scatter plot of data with 'x' column on the x-axis, 'y' column on the y-axis, and each point colored with respect to the 'prediction' column.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 1
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt