Challenge: Using DBSCAN Clustering to Detect Outliers
Tâche
Swipe to start coding
Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:
- Specify the parameters of the DBScan algorithm: set
eps
equal to0.35
andmin_samples
equal to6
. - Fit the algorithm and provide clustering.
- Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a
-1
label.
Solution
Tout était clair ?
Merci pour vos commentaires !
Section 3. Chapitre 2
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Awesome!
Completion rate improved to 6.67
Challenge: Using DBSCAN Clustering to Detect Outliers
Glissez pour afficher le menu
Tâche
Swipe to start coding
Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:
- Specify the parameters of the DBScan algorithm: set
eps
equal to0.35
andmin_samples
equal to6
. - Fit the algorithm and provide clustering.
- Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a
-1
label.
Solution
Tout était clair ?
Merci pour vos commentaires !
Awesome!
Completion rate improved to 6.67Section 3. Chapitre 2
single