Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Using DBSCAN Clustering to Detect Outliers | Machine Learning Techniques
Data Anomaly Detection

Glissez pour afficher le menu

book
Challenge: Using DBSCAN Clustering to Detect Outliers

Tâche

Swipe to start coding

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 2
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?

Demandez à l'IA

expand
ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

book
Challenge: Using DBSCAN Clustering to Detect Outliers

Tâche

Swipe to start coding

Now, you will apply the DBSCAN clustering algorithm to detect outliers on a simple Iris dataset.
You have to:

  1. Specify the parameters of the DBScan algorithm: set eps equal to 0.35 and min_samples equal to 6.
  2. Fit the algorithm and provide clustering.
  3. Get outlier indexes and indexes of normal data. Pay attention that outliers detected by the algorithm have a -1 label.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 2
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt