Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Défi : Préparer le Jeu de Données Iris | Concepts Plus Avancés
Essentiels de Pytorch

book
Défi : Préparer le Jeu de Données Iris

Tâche

Swipe to start coding

  1. Créez un TensorDataset.
  2. Enveloppez le TensorDataset dans un DataLoader avec une taille de lot de 32 et un mélange activé.

Solution

import torch
from torch.utils.data import TensorDataset, DataLoader
import pandas as pd

torch.manual_seed(42)
iris_df = pd.read_csv('https://content-media-cdn.codefinity.com/courses/1dd2b0f6-6ec0-40e6-a570-ed0ac2209666/section_2/iris.csv')
features = iris_df.drop(columns='species').values
target = iris_df['species'].values
# Convert features and target into PyTorch tensors
features_tensor = torch.tensor(features, dtype=torch.float32)
target_tensor = torch.tensor(target, dtype=torch.long)
# Create a TensorDataset
iris_dataset = TensorDataset(features_tensor, target_tensor)
# Wrap the dataset in a DataLoader
iris_loader = DataLoader(iris_dataset, batch_size=32, shuffle=True)
# Display the DataLoader in action
for batch_idx, (batch_features, batch_targets) in enumerate(iris_loader):
print(f"Batch {batch_idx + 1}:")
print("Features:\n", batch_features)
print("Targets:\n", batch_targets)
break # Display only the first batch

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 6
single

single

import torch
from torch.utils.data import TensorDataset, DataLoader
import pandas as pd

torch.manual_seed(42)
iris_df = pd.read_csv('https://content-media-cdn.codefinity.com/courses/1dd2b0f6-6ec0-40e6-a570-ed0ac2209666/section_2/iris.csv')
features = iris_df.drop(columns='species').values
target = iris_df['species'].values
# Convert features and target into PyTorch tensors
features_tensor = torch.tensor(features, dtype=torch.float32)
target_tensor = torch.tensor(target, dtype=torch.long)
# Create a TensorDataset
iris_dataset = ___
# Wrap the dataset in a DataLoader
iris_loader = ___
# Display the DataLoader in action
for batch_idx, (batch_features, batch_targets) in enumerate(iris_loader):
print(f"Batch {batch_idx + 1}:")
print("Features:\n", batch_features)
print("Targets:\n", batch_targets)
break

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

some-alt