Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Intervals to Compare | The First A/B Test
A/B Testing in Python

bookIntervals to Compare

In the previous chapter, we created 2 plots. We can also create 2 confidence intervals for these groups.

A confidence interval is the mean of your estimate plus and minus the variation in that estimate. This is the range of values you expect your estimate to fall between if you redo your test, within a certain level of confidence. Confidence, in statistics, is another way to describe probability.

Tu build them use scipy.stats.t.interval(alpha, data, loc, scale). In our case we will use alpha equals 0.95(you may also choose 0,99, but you will need to compare the p-value with 0,01 thus), the data.shape[1] as a data, loc = data.clicks.mean() and scale = scipy.stats.sem(data.clicks).

If intervals cover each other a lot, 2 groups don't differ a lot => the new version of the site doesn't make any big changes.

Tâche

Swipe to start coding

  1. Build the confidence interval for the df_control using the information from the NOTE in the theory.
  2. Build the confidence interval for the df_test.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 6
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Résumer ce chapitre

Expliquer le code dans file

Expliquer pourquoi file ne résout pas la tâche

close

Awesome!

Completion rate improved to 4.55

bookIntervals to Compare

Glissez pour afficher le menu

In the previous chapter, we created 2 plots. We can also create 2 confidence intervals for these groups.

A confidence interval is the mean of your estimate plus and minus the variation in that estimate. This is the range of values you expect your estimate to fall between if you redo your test, within a certain level of confidence. Confidence, in statistics, is another way to describe probability.

Tu build them use scipy.stats.t.interval(alpha, data, loc, scale). In our case we will use alpha equals 0.95(you may also choose 0,99, but you will need to compare the p-value with 0,01 thus), the data.shape[1] as a data, loc = data.clicks.mean() and scale = scipy.stats.sem(data.clicks).

If intervals cover each other a lot, 2 groups don't differ a lot => the new version of the site doesn't make any big changes.

Tâche

Swipe to start coding

  1. Build the confidence interval for the df_control using the information from the NOTE in the theory.
  2. Build the confidence interval for the df_test.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 6
single

single

some-alt