Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Drop Rows with Missing Data | Handling Missing and Duplicate Data
Python for Data Cleaning

bookChallenge: Drop Rows with Missing Data

When working with real-world datasets, you often encounter missing values represented as NaN (not a number). Deciding when to drop rows with missing data depends on the context and the importance of the missing information. Dropping rows is appropriate when the dataset is large enough that removing some rows will not significantly impact your analysis, or when the missing data is scattered randomly and does not represent a systematic issue. However, this approach can lead to loss of valuable information, especially if missing values are concentrated in a particular group or if the dataset is small. Always consider whether dropping rows could introduce bias or reduce the representativeness of your data.

1234567891011
import pandas as pd import numpy as np data = { "name": ["Alice", "Bob", "Charlie", "David"], "age": [25, np.nan, 30, 22], "city": ["New York", "Los Angeles", np.nan, "Chicago"] } df = pd.DataFrame(data) print(df)
copy
Tâche

Swipe to start coding

Write a function that returns a new DataFrame with all rows containing any missing values removed. The function should not modify the original DataFrame. Use only the provided parameters and variables.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 4
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Drop Rows with Missing Data

Glissez pour afficher le menu

When working with real-world datasets, you often encounter missing values represented as NaN (not a number). Deciding when to drop rows with missing data depends on the context and the importance of the missing information. Dropping rows is appropriate when the dataset is large enough that removing some rows will not significantly impact your analysis, or when the missing data is scattered randomly and does not represent a systematic issue. However, this approach can lead to loss of valuable information, especially if missing values are concentrated in a particular group or if the dataset is small. Always consider whether dropping rows could introduce bias or reduce the representativeness of your data.

1234567891011
import pandas as pd import numpy as np data = { "name": ["Alice", "Bob", "Charlie", "David"], "age": [25, np.nan, 30, 22], "city": ["New York", "Los Angeles", np.nan, "Chicago"] } df = pd.DataFrame(data) print(df)
copy
Tâche

Swipe to start coding

Write a function that returns a new DataFrame with all rows containing any missing values removed. The function should not modify the original DataFrame. Use only the provided parameters and variables.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 4
single

single

some-alt