Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Remove Whitespace from Strings | Foundations of Data Cleaning
Python for Data Cleaning

bookChallenge: Remove Whitespace from Strings

When working with categorical data in a DataFrame, extra whitespace at the beginning or end of string values can cause serious inconsistencies. For example, the values "apple", " apple", and "apple " may look the same to you, but Python treats them as different strings. This can lead to problems when grouping, filtering, or comparing data, and may result in incorrect analysis or missed patterns. Cleaning up these inconsistencies by stripping whitespace is a crucial first step in preparing your data for analysis.

12345678910
import pandas as pd data = { "Fruit": [" apple", "banana ", " cherry ", "date"], "Color": [" red", "yellow ", " red ", "brown"], "Count": [10, 5, 7, 3] } df = pd.DataFrame(data) print(df)
copy
Tâche

Swipe to start coding

Write a function that removes leading and trailing whitespace from all string columns in a DataFrame.

  • The function must return a new DataFrame with the same columns as the input.
  • All leading and trailing whitespace must be removed from every string value in columns with string data type.
  • Non-string columns must remain unchanged.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 5
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Remove Whitespace from Strings

Glissez pour afficher le menu

When working with categorical data in a DataFrame, extra whitespace at the beginning or end of string values can cause serious inconsistencies. For example, the values "apple", " apple", and "apple " may look the same to you, but Python treats them as different strings. This can lead to problems when grouping, filtering, or comparing data, and may result in incorrect analysis or missed patterns. Cleaning up these inconsistencies by stripping whitespace is a crucial first step in preparing your data for analysis.

12345678910
import pandas as pd data = { "Fruit": [" apple", "banana ", " cherry ", "date"], "Color": [" red", "yellow ", " red ", "brown"], "Count": [10, 5, 7, 3] } df = pd.DataFrame(data) print(df)
copy
Tâche

Swipe to start coding

Write a function that removes leading and trailing whitespace from all string columns in a DataFrame.

  • The function must return a new DataFrame with the same columns as the input.
  • All leading and trailing whitespace must be removed from every string value in columns with string data type.
  • Non-string columns must remain unchanged.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 5
single

single

some-alt