Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Shortest Path in Graph | Practice
Breadth First Search
course content

Contenu du cours

Breadth First Search

Breadth First Search

1. What is BFS
2. Practice
3. Improve Your Code
4. Solving the Problems using BFS

book
Shortest Path in Graph

BFS searching shortest path

Well done! Now, let's implement a method that helps us to find the length of shortest path between two vertices, i. e. minimum number of edges to reach end vertice from start.

You should store the length of the way from start to curr node, and you can do it by modifying visited array: visited[i] equals:

  • -1, if i not visited yet

  • 0, if i is visited as first node

  • 1, if i is a neighbor of node, that has mark 0

  • k, if i is a neighbor of node with mark k-1 etc.

This way, you'll store the distance between start and current node, like at the example:

So, the answer is a visited[end].

Tâche

Swipe to start coding

bfs(start, end) returns a number of edges between start and end nodes. If there is no path, return -1.

Actually this method does traverse as BFT method, but until the end vertex is found. Copy & Paste your BFT algorithm, and add some changes.

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 3
toggle bottom row

book
Shortest Path in Graph

BFS searching shortest path

Well done! Now, let's implement a method that helps us to find the length of shortest path between two vertices, i. e. minimum number of edges to reach end vertice from start.

You should store the length of the way from start to curr node, and you can do it by modifying visited array: visited[i] equals:

  • -1, if i not visited yet

  • 0, if i is visited as first node

  • 1, if i is a neighbor of node, that has mark 0

  • k, if i is a neighbor of node with mark k-1 etc.

This way, you'll store the distance between start and current node, like at the example:

So, the answer is a visited[end].

Tâche

Swipe to start coding

bfs(start, end) returns a number of edges between start and end nodes. If there is no path, return -1.

Actually this method does traverse as BFT method, but until the end vertex is found. Copy & Paste your BFT algorithm, and add some changes.

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 3
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt