Building Polynomial Regression
Loading File
We load poly.csv and inspect it:
1234import pandas as pd file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/poly.csv' df = pd.read_csv(file_link) print(df.head())
Then visualize the relation:
12345import matplotlib.pyplot as plt X = df['Feature'] y = df['Target'] plt.scatter(X, y) plt.show()
A straight line fits poorly, so Polynomial Regression is more suitable.
Building X̃ Matrix
To create X̃, we could add squared features manually:
df['Feature_squared'] = df['Feature'] ** 2
But for higher degrees, PolynomialFeatures is easier. It requires a 2-D structure:
from sklearn.preprocessing import PolynomialFeatures
X = df[['Feature']]
poly = PolynomialFeatures(n)
X_tilde = poly.fit_transform(X)
It also adds the constant column, so no sm.add_constant() needed.
If X is 1-D, convert it:
X = X.reshape(-1, 1)
Building the Polynomial Regression
import statsmodels.api as sm
y = df['Target']
X = df[['Feature']]
X_tilde = PolynomialFeatures(n).fit_transform(X)
model = sm.OLS(y, X_tilde).fit()
Predicting requires transforming new data the same way:
X_new_tilde = PolynomialFeatures(n).fit_transform(X_new)
y_pred = model.predict(X_new_tilde)
Full Example
123456789101112131415161718import pandas as pd, numpy as np, matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.preprocessing import PolynomialFeatures df = pd.read_csv(file_link) n = 2 X = df[['Feature']] y = df['Target'] X_tilde = PolynomialFeatures(n).fit_transform(X) model = sm.OLS(y, X_tilde).fit() X_new = np.linspace(-0.1, 1.5, 80).reshape(-1,1) X_new_tilde = PolynomialFeatures(n).fit_transform(X_new) y_pred = model.predict(X_new_tilde) plt.scatter(X, y) plt.plot(X_new, y_pred) plt.show()
Try different n values to see how the curve changes and how predictions behave outside the original feature range—this leads into the next chapter.
Merci pour vos commentaires !
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Génial!
Completion taux amélioré à 6.67
Building Polynomial Regression
Glissez pour afficher le menu
Loading File
We load poly.csv and inspect it:
1234import pandas as pd file_link = 'https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/poly.csv' df = pd.read_csv(file_link) print(df.head())
Then visualize the relation:
12345import matplotlib.pyplot as plt X = df['Feature'] y = df['Target'] plt.scatter(X, y) plt.show()
A straight line fits poorly, so Polynomial Regression is more suitable.
Building X̃ Matrix
To create X̃, we could add squared features manually:
df['Feature_squared'] = df['Feature'] ** 2
But for higher degrees, PolynomialFeatures is easier. It requires a 2-D structure:
from sklearn.preprocessing import PolynomialFeatures
X = df[['Feature']]
poly = PolynomialFeatures(n)
X_tilde = poly.fit_transform(X)
It also adds the constant column, so no sm.add_constant() needed.
If X is 1-D, convert it:
X = X.reshape(-1, 1)
Building the Polynomial Regression
import statsmodels.api as sm
y = df['Target']
X = df[['Feature']]
X_tilde = PolynomialFeatures(n).fit_transform(X)
model = sm.OLS(y, X_tilde).fit()
Predicting requires transforming new data the same way:
X_new_tilde = PolynomialFeatures(n).fit_transform(X_new)
y_pred = model.predict(X_new_tilde)
Full Example
123456789101112131415161718import pandas as pd, numpy as np, matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.preprocessing import PolynomialFeatures df = pd.read_csv(file_link) n = 2 X = df[['Feature']] y = df['Target'] X_tilde = PolynomialFeatures(n).fit_transform(X) model = sm.OLS(y, X_tilde).fit() X_new = np.linspace(-0.1, 1.5, 80).reshape(-1,1) X_new_tilde = PolynomialFeatures(n).fit_transform(X_new) y_pred = model.predict(X_new_tilde) plt.scatter(X, y) plt.plot(X_new, y_pred) plt.show()
Try different n values to see how the curve changes and how predictions behave outside the original feature range—this leads into the next chapter.
Merci pour vos commentaires !