Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Find Similar Drug-like Molecules | Similarity, Clustering and Drug Discovery
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Chemoinformatics

bookChallenge: Find Similar Drug-like Molecules

Tâche

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 2
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookChallenge: Find Similar Drug-like Molecules

Glissez pour afficher le menu

Tâche

Swipe to start coding

Write a function to identify molecules from a list of candidate SMILES strings that are similar to a given reference SMILES, using Tanimoto similarity.

  • Parse the reference_smiles string into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • For each SMILES in candidate_smiles_list, parse it into an RDKit molecule and generate its Morgan fingerprint with a radius of 2.
  • Compute the Tanimoto similarity between the reference fingerprint and each candidate fingerprint.
  • Return a list of SMILES strings for those candidates with similarity strictly greater than 0.7.

Before running this code or the tests, you must install the RDKit library in your environment. If you control the environment, use 'conda install -c conda-forge rdkit' or 'pip install rdkit'. If you do not control the environment, contact the platform support or check their documentation for available packages.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 2
single

single

some-alt