Challenge: Model Selection Workflow
Tâche
Swipe to start coding
You are working with scikit-learn model selection tools to evaluate and compare models in a consistent way.
- Split the dataset
Xandyinto training and test sets usingtrain_test_splitwith:test_size=0.25;random_state=42.
- Create a
LogisticRegressionestimator withmax_iter=1000. - Evaluate the estimator using
cross_val_scorewithcv=3. - Create a
GridSearchCVobject namedgrid_searchwith:- the estimator;
- the parameter grid
param_grid; cv=3.
- Fit
grid_searchon the training data. - Store:
- the mean cross-validation score in
cv_mean_score; - the best parameter dictionary in
best_params.
- the mean cross-validation score in
Solution
Tout était clair ?
Merci pour vos commentaires !
Section 4. Chapitre 4
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Suggested prompts:
Can you explain this in simpler terms?
What are the main benefits or drawbacks?
Can you give me a real-world example?
Génial!
Completion taux amélioré à 5.26
Challenge: Model Selection Workflow
Glissez pour afficher le menu
Tâche
Swipe to start coding
You are working with scikit-learn model selection tools to evaluate and compare models in a consistent way.
- Split the dataset
Xandyinto training and test sets usingtrain_test_splitwith:test_size=0.25;random_state=42.
- Create a
LogisticRegressionestimator withmax_iter=1000. - Evaluate the estimator using
cross_val_scorewithcv=3. - Create a
GridSearchCVobject namedgrid_searchwith:- the estimator;
- the parameter grid
param_grid; cv=3.
- Fit
grid_searchon the training data. - Store:
- the mean cross-validation score in
cv_mean_score; - the best parameter dictionary in
best_params.
- the mean cross-validation score in
Solution
Tout était clair ?
Merci pour vos commentaires !
Section 4. Chapitre 4
single