Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Inflation Rate Visualization | Economic Data Analysis with Python
Python for Economists

bookChallenge: Inflation Rate Visualization

You are ready to put your skills into practice by visualizing inflation rates for several countries across a decade. This challenge requires you to work with a hardcoded pandas DataFrame containing inflation data, and then use matplotlib to create a clear, informative line plot. Each country's inflation rate should be shown as a distinct line on the same plot, with a legend to identify them and properly labeled axes. This kind of visualization is essential for economists to quickly compare inflation trends across countries and time periods.

12345678910111213141516171819202122232425262728293031
import pandas as pd import matplotlib.pyplot as plt # Hardcoded inflation data for several countries over 10 years data = { "Year": [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021], "USA": [2.1, 1.5, 1.6, 0.1, 1.3, 2.1, 2.4, 1.8, 1.2, 4.7], "Germany": [2.0, 1.5, 0.9, 0.2, 0.5, 1.5, 1.9, 1.4, 0.5, 3.1], "Japan": [0.0, 0.4, 2.7, 0.8, -0.1, 0.5, 1.0, 0.5, 0.0, -0.2], "Brazil": [5.4, 6.2, 6.3, 9.0, 8.7, 3.4, 3.7, 3.7, 3.2, 8.7] } df = pd.DataFrame(data) def plot_inflation_rates(df): """ Plots inflation rates for each country over time. """ plt.figure(figsize=(10, 6)) for country in df.columns: if country != "Year": plt.plot(df["Year"], df[country], marker="o", label=country) plt.xlabel("Year") plt.ylabel("Inflation Rate (%)") plt.title("Inflation Rates by Country (2012-2021)") plt.legend() plt.grid(True) plt.tight_layout() plt.show() # Call the function to display the plot plot_inflation_rates(df)
copy
Tâche

Swipe to start coding

Write a function called plot_inflation_rates that takes a pandas DataFrame with a "Year" column and one column per country (containing inflation rates). The function should:

  • Create a line plot using matplotlib.
  • Plot each country's inflation rate as a separate line on the same plot.
  • Add a legend to identify each country.
  • Label the x-axis as Year and the y-axis as Inflation Rate (%).
  • Display the plot.

Use the following DataFrame for testing:

  • Year: [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021].
  • USA: [2.1, 1.5, 1.6, 0.1, 1.3, 2.1, 2.4, 1.8, 1.2, 4.7].
  • Germany: [2.0, 1.5, 0.9, 0.2, 0.5, 1.5, 1.9, 1.4, 0.5, 3.1].
  • Japan: [0.0, 0.4, 2.7, 0.8, -0.1, 0.5, 1.0, 0.5, 0.0, -0.2].
  • Brazil: [5.4, 6.2, 6.3, 9.0, 8.7, 3.4, 3.7, 3.7, 3.2, 8.7].

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 7
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookChallenge: Inflation Rate Visualization

Glissez pour afficher le menu

You are ready to put your skills into practice by visualizing inflation rates for several countries across a decade. This challenge requires you to work with a hardcoded pandas DataFrame containing inflation data, and then use matplotlib to create a clear, informative line plot. Each country's inflation rate should be shown as a distinct line on the same plot, with a legend to identify them and properly labeled axes. This kind of visualization is essential for economists to quickly compare inflation trends across countries and time periods.

12345678910111213141516171819202122232425262728293031
import pandas as pd import matplotlib.pyplot as plt # Hardcoded inflation data for several countries over 10 years data = { "Year": [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021], "USA": [2.1, 1.5, 1.6, 0.1, 1.3, 2.1, 2.4, 1.8, 1.2, 4.7], "Germany": [2.0, 1.5, 0.9, 0.2, 0.5, 1.5, 1.9, 1.4, 0.5, 3.1], "Japan": [0.0, 0.4, 2.7, 0.8, -0.1, 0.5, 1.0, 0.5, 0.0, -0.2], "Brazil": [5.4, 6.2, 6.3, 9.0, 8.7, 3.4, 3.7, 3.7, 3.2, 8.7] } df = pd.DataFrame(data) def plot_inflation_rates(df): """ Plots inflation rates for each country over time. """ plt.figure(figsize=(10, 6)) for country in df.columns: if country != "Year": plt.plot(df["Year"], df[country], marker="o", label=country) plt.xlabel("Year") plt.ylabel("Inflation Rate (%)") plt.title("Inflation Rates by Country (2012-2021)") plt.legend() plt.grid(True) plt.tight_layout() plt.show() # Call the function to display the plot plot_inflation_rates(df)
copy
Tâche

Swipe to start coding

Write a function called plot_inflation_rates that takes a pandas DataFrame with a "Year" column and one column per country (containing inflation rates). The function should:

  • Create a line plot using matplotlib.
  • Plot each country's inflation rate as a separate line on the same plot.
  • Add a legend to identify each country.
  • Label the x-axis as Year and the y-axis as Inflation Rate (%).
  • Display the plot.

Use the following DataFrame for testing:

  • Year: [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021].
  • USA: [2.1, 1.5, 1.6, 0.1, 1.3, 2.1, 2.4, 1.8, 1.2, 4.7].
  • Germany: [2.0, 1.5, 0.9, 0.2, 0.5, 1.5, 1.9, 1.4, 0.5, 3.1].
  • Japan: [0.0, 0.4, 2.7, 0.8, -0.1, 0.5, 1.0, 0.5, 0.0, -0.2].
  • Brazil: [5.4, 6.2, 6.3, 9.0, 8.7, 3.4, 3.7, 3.7, 3.2, 8.7].

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 7
single

single

some-alt