Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Implementing a Decision Tree | Section
Practice
Projects
Quizzes & Challenges
Quiz
Challenges
/
Classification with Python

bookChallenge: Implementing a Decision Tree

In this challenge, you will use the Titanic dataset, which contains information about passengers on the Titanic, including their age, sex, family size, and more. The goal is to predict whether a passenger survived or not.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/titanic.csv') print(df.head())
copy

To implement the Decision Tree, you can use the DecisionTreeClassifier from sklearn:

Your task is to build a Decision Tree and find the best max_depth and min_samples_leaf using grid search.

Tâche

Swipe to start coding

You are given a Titanic dataset stored as a DataFrame in the df variable.

  • Initialize a Decision Tree model and store it in the decision_tree variable.
  • Create a dictionary for GridSearchCV to iterate through [1, 2, 3, 4, 5, 6, 7] values for max_depth and [1, 2, 4, 6] values for min_samples_leaf, and store it in the param_grid variable.
  • Initialize and train a GridSearchCV object, set the number of folds to 10, and store the trained model in the grid_cv variable.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 17
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookChallenge: Implementing a Decision Tree

Glissez pour afficher le menu

In this challenge, you will use the Titanic dataset, which contains information about passengers on the Titanic, including their age, sex, family size, and more. The goal is to predict whether a passenger survived or not.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/titanic.csv') print(df.head())
copy

To implement the Decision Tree, you can use the DecisionTreeClassifier from sklearn:

Your task is to build a Decision Tree and find the best max_depth and min_samples_leaf using grid search.

Tâche

Swipe to start coding

You are given a Titanic dataset stored as a DataFrame in the df variable.

  • Initialize a Decision Tree model and store it in the decision_tree variable.
  • Create a dictionary for GridSearchCV to iterate through [1, 2, 3, 4, 5, 6, 7] values for max_depth and [1, 2, 4, 6] values for min_samples_leaf, and store it in the param_grid variable.
  • Initialize and train a GridSearchCV object, set the number of folds to 10, and store the trained model in the grid_cv variable.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 17
single

single

some-alt