Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Notions de Base du NLP | Analyse de Sentiment
Introduction aux RNN

bookNotions de Base du NLP

NLP enables machines to read, understand, and generate human language. By applying various algorithms and models, NLP systems can perform tasks such as speech recognition, translation, summarization, and sentiment analysis.

Tâches clés en PNL :

  • Text preprocessing: involves cleaning the text data to make it suitable for analysis. Common preprocessing steps include tokenization, removing stop words, and stemming or lemmatization;
  • Text classification: assigning categories or labels to text data. Sentiment analysis is one example, where the goal is to classify text as positive, negative, or neutral;
  • Named entity recognition (NER): identifying and classifying entities in text, such as names of people, organizations, locations, and dates;
  • Part-of-speech tagging: determining the grammatical structure of a sentence by identifying parts of speech like nouns, verbs, adjectives, etc.;
  • Sentiment analysis: the primary task of this section. Sentiment analysis involves determining the sentiment or emotion expressed in a piece of text. This is commonly used in analyzing social media posts, customer reviews, and feedback, and is typically performed using machine learning models trained on labeled data.

En résumé, la PNL est une technologie clé permettant aux machines de traiter et de comprendre le langage humain. Maîtriser les bases de la PNL, telles que le prétraitement du texte, la classification et les embeddings, constitue la base pour des tâches plus avancées comme l'analyse de sentiment et au-delà.

question mark

Laquelle des propositions suivantes est une tâche clé en PNL ?

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 1

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Awesome!

Completion rate improved to 4.55

bookNotions de Base du NLP

Glissez pour afficher le menu

NLP enables machines to read, understand, and generate human language. By applying various algorithms and models, NLP systems can perform tasks such as speech recognition, translation, summarization, and sentiment analysis.

Tâches clés en PNL :

  • Text preprocessing: involves cleaning the text data to make it suitable for analysis. Common preprocessing steps include tokenization, removing stop words, and stemming or lemmatization;
  • Text classification: assigning categories or labels to text data. Sentiment analysis is one example, where the goal is to classify text as positive, negative, or neutral;
  • Named entity recognition (NER): identifying and classifying entities in text, such as names of people, organizations, locations, and dates;
  • Part-of-speech tagging: determining the grammatical structure of a sentence by identifying parts of speech like nouns, verbs, adjectives, etc.;
  • Sentiment analysis: the primary task of this section. Sentiment analysis involves determining the sentiment or emotion expressed in a piece of text. This is commonly used in analyzing social media posts, customer reviews, and feedback, and is typically performed using machine learning models trained on labeled data.

En résumé, la PNL est une technologie clé permettant aux machines de traiter et de comprendre le langage humain. Maîtriser les bases de la PNL, telles que le prétraitement du texte, la classification et les embeddings, constitue la base pour des tâches plus avancées comme l'analyse de sentiment et au-delà.

question mark

Laquelle des propositions suivantes est une tâche clé en PNL ?

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 1
some-alt