Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Evaluation Before and After Calibration | Calibration Methods in Practice
Model Calibration with Python

bookEvaluation Before and After Calibration

Tâche

Swipe to start coding

In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:

  • Brier score
  • Expected Calibration Error (ECE)
  • Calibration curve points

You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.

Your goal:

  1. Train a logistic regression classifier on the dataset.

  2. Generate uncalibrated predicted probabilities.

  3. Apply isotonic calibration using CalibratedClassifierCV.

  4. Compute Brier score and a simple ECE metric before and after calibration.

  5. Print the results as two values:

    • brier_before, brier_after
    • ece_before, ece_after

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 6
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookEvaluation Before and After Calibration

Glissez pour afficher le menu

Tâche

Swipe to start coding

In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:

  • Brier score
  • Expected Calibration Error (ECE)
  • Calibration curve points

You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.

Your goal:

  1. Train a logistic regression classifier on the dataset.

  2. Generate uncalibrated predicted probabilities.

  3. Apply isotonic calibration using CalibratedClassifierCV.

  4. Compute Brier score and a simple ECE metric before and after calibration.

  5. Print the results as two values:

    • brier_before, brier_after
    • ece_before, ece_after

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 6
single

single

some-alt