How Much Do We Earn
You may recognize the column 'money_spent'
that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!
But firstly, recall some functions:
Group Data:
12df = df[['columns which we group']] .groupby(['columns on which we group'])
Visualization:
1234sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
Swipe to start coding
- Group data:
- Extract only columns
'day', 'money_spent'
from thedf
DataFrame. - Group by the column
'day'
. - Apply
.mean()
function to groupeddf
. - Apply
.reset_index()
function.
- Create a barplot:
- Use
df
as the first argument. - Use column
'day'
for x-axis. - Use the column
'money_spent'
for the y-axis.
- Output barplot.
Solution
Merci pour vos commentaires !
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Awesome!
Completion rate improved to 2.08
How Much Do We Earn
Glissez pour afficher le menu
You may recognize the column 'money_spent'
that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!
But firstly, recall some functions:
Group Data:
12df = df[['columns which we group']] .groupby(['columns on which we group'])
Visualization:
1234sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
Swipe to start coding
- Group data:
- Extract only columns
'day', 'money_spent'
from thedf
DataFrame. - Group by the column
'day'
. - Apply
.mean()
function to groupeddf
. - Apply
.reset_index()
function.
- Create a barplot:
- Use
df
as the first argument. - Use column
'day'
for x-axis. - Use the column
'money_spent'
for the y-axis.
- Output barplot.
Solution
Merci pour vos commentaires !
Awesome!
Completion rate improved to 2.08single