Sorting Data
We need sorting for ease of work.
We can sort our data in 2 ways: ascending sorting and descending sorting.
To perform the ascending sorting, use the following code:
DataFrame.sort_values(by = 'column_name', inplace = True)
If we want to perform descending, we have to turn off the ascending
parameter.
DataFrame.sort_values(by = 'column_name', inplace = True, ascending = False)
If the parameter inplace is set to
True
(inplace = True
), it will perform the operation inplace. Modify the original DataFrame itself. The return type isNone
.
Swipe to start coding
Now we are going to practice sorting. We will sort 2 different DataFrame columns using ascending and descending sorting.
- Import the
pandas
using thepd
alias. - Perform an ascending sorting by the
'price'
column. - Perform a descending sorting by the
'user_id'
column.
Solution
Merci pour vos commentaires !
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Awesome!
Completion rate improved to 2.08
Sorting Data
Glissez pour afficher le menu
We need sorting for ease of work.
We can sort our data in 2 ways: ascending sorting and descending sorting.
To perform the ascending sorting, use the following code:
DataFrame.sort_values(by = 'column_name', inplace = True)
If we want to perform descending, we have to turn off the ascending
parameter.
DataFrame.sort_values(by = 'column_name', inplace = True, ascending = False)
If the parameter inplace is set to
True
(inplace = True
), it will perform the operation inplace. Modify the original DataFrame itself. The return type isNone
.
Swipe to start coding
Now we are going to practice sorting. We will sort 2 different DataFrame columns using ascending and descending sorting.
- Import the
pandas
using thepd
alias. - Perform an ascending sorting by the
'price'
column. - Perform a descending sorting by the
'user_id'
column.
Solution
Merci pour vos commentaires !
Awesome!
Completion rate improved to 2.08single