Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Introduction to Limits | Analyse Mathématique
Mathématiques pour la Science des Données

bookIntroduction to Limits

Note
Definition

A limit is a fundamental concept in calculus that describes the value a function approaches as its input nears a specific point. Limits form the basis for defining derivatives and integrals, making them essential in mathematical analysis and machine learning optimization.

Formal Definition & Notation

A limit represents the value that a function approaches as the input gets arbitrarily close to a point.

limxaf(x)=L\lim_{x \rarr a}f(x) = L

This means that as xx gets arbitrarily close to aa where approaches LL.

Note
Note

The function does not need to be defined at x=ax=a for the limit to exist.

One-Sided & Two-Sided Limits

A limit can be approached from either side:

  • Left-hand limit: approaching aa from values smaller than aa: limxaf(x)\lim_{x \rarr a^-}f(x)
  • Right-hand limit: approaching aa from values larger than aa: limxa+f(x)\lim_{x \rarr a^+}f(x)
  • The limit exists only if both one-sided limits are equal: limxaf(x)=limxa+f(x)\lim_{x \rarr a^-}f(x) = \lim_{x \rarr a^+}f(x)

When Limits Fail to Exist

A limit does not exist in the following cases:

  • Jump discontinuity: limxaf(x)limxa+f(x)\lim_{x \rarr a^-}f(x) \neq \lim_{x \rarr a^+}f(x)
    • Example: a step function where the left and right limits are different.
  • Infinite limit: limx01x2=\lim_{x \rarr 0}\frac{1}{x^2}=\infty
    • The function grows unbounded.
  • Oscillation: limx0sin(1x)\lim_{x \rarr 0}\sin\left(\frac{1}{x}\right)
    • The function fluctuates infinitely without settling to a single value.

Special Case – Limits at Infinity

When xx approaches infinity, we analyze the end behavior of functions:

  • Rational functions: limx1x=0\lim_{x \rarr \infty}\frac{1}{x}=0
  • Polynomial growth: limxx2x=\lim_{x \rarr \infty}\frac{x^2}{x}=\infty
  • Dominant term rule: limxaxmbxn={0, if m<n,ab, if m=n,±, if m>n.\lim_{x \to \infty} \frac{a x^m}{b x^n} = \begin{cases} 0,\ \text{if } m < n,\\ \frac{a}{b},\ \text{if } m = n, \\ \pm \infty,\ \text{if } m > n. \end{cases}
question mark

Which statement correctly describes when a limit exists?

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 1

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Can you explain the difference between one-sided and two-sided limits?

What are some common techniques for evaluating limits?

Can you give examples of when a limit does not exist?

Awesome!

Completion rate improved to 1.96

bookIntroduction to Limits

Glissez pour afficher le menu

Note
Definition

A limit is a fundamental concept in calculus that describes the value a function approaches as its input nears a specific point. Limits form the basis for defining derivatives and integrals, making them essential in mathematical analysis and machine learning optimization.

Formal Definition & Notation

A limit represents the value that a function approaches as the input gets arbitrarily close to a point.

limxaf(x)=L\lim_{x \rarr a}f(x) = L

This means that as xx gets arbitrarily close to aa where approaches LL.

Note
Note

The function does not need to be defined at x=ax=a for the limit to exist.

One-Sided & Two-Sided Limits

A limit can be approached from either side:

  • Left-hand limit: approaching aa from values smaller than aa: limxaf(x)\lim_{x \rarr a^-}f(x)
  • Right-hand limit: approaching aa from values larger than aa: limxa+f(x)\lim_{x \rarr a^+}f(x)
  • The limit exists only if both one-sided limits are equal: limxaf(x)=limxa+f(x)\lim_{x \rarr a^-}f(x) = \lim_{x \rarr a^+}f(x)

When Limits Fail to Exist

A limit does not exist in the following cases:

  • Jump discontinuity: limxaf(x)limxa+f(x)\lim_{x \rarr a^-}f(x) \neq \lim_{x \rarr a^+}f(x)
    • Example: a step function where the left and right limits are different.
  • Infinite limit: limx01x2=\lim_{x \rarr 0}\frac{1}{x^2}=\infty
    • The function grows unbounded.
  • Oscillation: limx0sin(1x)\lim_{x \rarr 0}\sin\left(\frac{1}{x}\right)
    • The function fluctuates infinitely without settling to a single value.

Special Case – Limits at Infinity

When xx approaches infinity, we analyze the end behavior of functions:

  • Rational functions: limx1x=0\lim_{x \rarr \infty}\frac{1}{x}=0
  • Polynomial growth: limxx2x=\lim_{x \rarr \infty}\frac{x^2}{x}=\infty
  • Dominant term rule: limxaxmbxn={0, if m<n,ab, if m=n,±, if m>n.\lim_{x \to \infty} \frac{a x^m}{b x^n} = \begin{cases} 0,\ \text{if } m < n,\\ \frac{a}{b},\ \text{if } m = n, \\ \pm \infty,\ \text{if } m > n. \end{cases}
question mark

Which statement correctly describes when a limit exists?

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 1
some-alt