Challenge: Predict Asset Returns with Linear Regression
Swipe to start coding
You are given a DataFrame containing daily returns for two assets and the market. Your task is to build a linear regression model to predict the returns of Asset_A using Asset_B and Market returns as features.
- Implement the function
predict_asset_returns(df). - Use
Asset_BandMarketcolumns as input features (X), andAsset_Aas the target variable (y). - Fit a linear regression model using scikit-learn's
LinearRegression. - Use the model to predict Asset_A returns for the same input data.
- Return the predictions as a numpy array.
- Print the predictions after calling your function.
Solution
Merci pour vos commentaires !
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Can you explain this in simpler terms?
What are the main points I should remember?
Can you give me an example?
Génial!
Completion taux amélioré à 4.76
Challenge: Predict Asset Returns with Linear Regression
Glissez pour afficher le menu
Swipe to start coding
You are given a DataFrame containing daily returns for two assets and the market. Your task is to build a linear regression model to predict the returns of Asset_A using Asset_B and Market returns as features.
- Implement the function
predict_asset_returns(df). - Use
Asset_BandMarketcolumns as input features (X), andAsset_Aas the target variable (y). - Fit a linear regression model using scikit-learn's
LinearRegression. - Use the model to predict Asset_A returns for the same input data.
- Return the predictions as a numpy array.
- Print the predictions after calling your function.
Solution
Merci pour vos commentaires !
single