Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Predict Asset Returns with Linear Regression | Advanced Analysis and Automation for Investors
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Investors

bookChallenge: Predict Asset Returns with Linear Regression

Tâche

Swipe to start coding

You are given a DataFrame containing daily returns for two assets and the market. Your task is to build a linear regression model to predict the returns of Asset_A using Asset_B and Market returns as features.

  • Implement the function predict_asset_returns(df).
  • Use Asset_B and Market columns as input features (X), and Asset_A as the target variable (y).
  • Fit a linear regression model using scikit-learn's LinearRegression.
  • Use the model to predict Asset_A returns for the same input data.
  • Return the predictions as a numpy array.
  • Print the predictions after calling your function.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 5
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Predict Asset Returns with Linear Regression

Glissez pour afficher le menu

Tâche

Swipe to start coding

You are given a DataFrame containing daily returns for two assets and the market. Your task is to build a linear regression model to predict the returns of Asset_A using Asset_B and Market returns as features.

  • Implement the function predict_asset_returns(df).
  • Use Asset_B and Market columns as input features (X), and Asset_A as the target variable (y).
  • Fit a linear regression model using scikit-learn's LinearRegression.
  • Use the model to predict Asset_A returns for the same input data.
  • Return the predictions as a numpy array.
  • Print the predictions after calling your function.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 5
single

single

some-alt