Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge 4: Altering DataFrame | Pandas
Data Science Interview Challenge

Glissez pour afficher le menu

book
Challenge 4: Altering DataFrame

Pandas provides a plethora of tools that allow for easy modification of both data and structure of DataFrames. These capabilities are essential because:

  • Data Cleaning: Real-world datasets are often messy. The ability to transform and clean data ensures its readiness for analysis.

  • Versatility: Frequently, the structure of a dataset may not align with the requirements of a given task. Being able to reshape data can be a lifesaver.

  • Efficiency: Direct modifications to DataFrames, as opposed to creating new ones, can save memory and improve performance.

Getting familiar with the techniques to alter data and the structure of DataFrames is a key step in becoming proficient with Pandas.

Tâche

Swipe to start coding

Harness the power of Pandas to alter data and the structure of DataFrames:

  1. Add a new column to a DataFrame with values Engineer, Doctor and Artist.
  2. Rename columns in a DataFrame. Change the Name column into Full Name and the Age column into Age (years).
  3. Drop a column City from a DataFrame.
  4. Sort a DataFrame based on the Age column (descending).

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 4
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?

Demandez à l'IA

expand
ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

book
Challenge 4: Altering DataFrame

Pandas provides a plethora of tools that allow for easy modification of both data and structure of DataFrames. These capabilities are essential because:

  • Data Cleaning: Real-world datasets are often messy. The ability to transform and clean data ensures its readiness for analysis.

  • Versatility: Frequently, the structure of a dataset may not align with the requirements of a given task. Being able to reshape data can be a lifesaver.

  • Efficiency: Direct modifications to DataFrames, as opposed to creating new ones, can save memory and improve performance.

Getting familiar with the techniques to alter data and the structure of DataFrames is a key step in becoming proficient with Pandas.

Tâche

Swipe to start coding

Harness the power of Pandas to alter data and the structure of DataFrames:

  1. Add a new column to a DataFrame with values Engineer, Doctor and Artist.
  2. Rename columns in a DataFrame. Change the Name column into Full Name and the Age column into Age (years).
  3. Drop a column City from a DataFrame.
  4. Sort a DataFrame based on the Age column (descending).

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 4
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Nous sommes désolés de vous informer que quelque chose s'est mal passé. Qu'est-il arrivé ?
some-alt