Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Service Uptime Analyzer | Data-Driven DevOps Decisions
Python for DevOps Beginners

bookChallenge: Service Uptime Analyzer

In DevOps, maintaining high service uptime is a top priority, as even short outages can impact users and business operations. Being able to quickly analyze and identify servers that are underperforming helps you take proactive steps to ensure reliability. In this challenge, you will use your skills with pandas DataFrames to process and interpret service uptime data, making it easier to spot issues before they escalate.

Tâche

Swipe to start coding

You need to implement a script that analyzes service uptime data for a set of servers and highlights any that fall below a specified threshold.

  • Create a pandas DataFrame from the provided list of dictionaries.
  • Calculate the average uptime across all servers.
  • Identify servers with uptime less than the threshold.
  • Print the average uptime and a list of underperforming servers, or indicate if all meet the threshold.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 3
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookChallenge: Service Uptime Analyzer

Glissez pour afficher le menu

In DevOps, maintaining high service uptime is a top priority, as even short outages can impact users and business operations. Being able to quickly analyze and identify servers that are underperforming helps you take proactive steps to ensure reliability. In this challenge, you will use your skills with pandas DataFrames to process and interpret service uptime data, making it easier to spot issues before they escalate.

Tâche

Swipe to start coding

You need to implement a script that analyzes service uptime data for a set of servers and highlights any that fall below a specified threshold.

  • Create a pandas DataFrame from the provided list of dictionaries.
  • Calculate the average uptime across all servers.
  • Identify servers with uptime less than the threshold.
  • Print the average uptime and a list of underperforming servers, or indicate if all meet the threshold.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 3
single

single

some-alt