Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Autoregression | Stationary Models
Time Series Analysis
course content

Contenu du cours

Time Series Analysis

Time Series Analysis

1. Time Series: Let's Start
2. Time Series Processing
3. Time Series Visualization
4. Stationary Models
5. Non-Stationary Models
6. Solve Real Problems

book
Autoregression

Let's move on to the review of the autoregressive model:

The formula is similar to the linear regression formula, which is where the name comes from. Instead of the coefficient - the past value of x is used.

With statsmodels we can run an autoregressive model AutoReg():

If you notice, the predictions made by the autoregressive model are more accurate than those of the simple moving average.

Let's learn how to evaluate the received results of the trained models. The error is calculated using the mean-squared error. This is done simply with the help of functions sqrt() and mean_squared_error():

In the same way, we calculate the error value for the previous model:

The smaller the MSE value, the correspondingly smaller the error.

Tâche

Swipe to start coding

Create an autoregressive model and train it on the dataset shampoo.csv.

  1. Create an autoregression model (Autoreg) with 6 lags for the "Sales" column of the df DataFrame.
  2. Fit the model to data.
  3. Make predictions using the model. Start forecasting at the first row (the start parameter), and set the dynamic parameter to False.
  4. Visualize the results: show the first 150 observations of the "Sales" column of the df DataFrame within the first call of the .plot() function and the first 150 predicted values within the second call.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 3
toggle bottom row

book
Autoregression

Let's move on to the review of the autoregressive model:

The formula is similar to the linear regression formula, which is where the name comes from. Instead of the coefficient - the past value of x is used.

With statsmodels we can run an autoregressive model AutoReg():

If you notice, the predictions made by the autoregressive model are more accurate than those of the simple moving average.

Let's learn how to evaluate the received results of the trained models. The error is calculated using the mean-squared error. This is done simply with the help of functions sqrt() and mean_squared_error():

In the same way, we calculate the error value for the previous model:

The smaller the MSE value, the correspondingly smaller the error.

Tâche

Swipe to start coding

Create an autoregressive model and train it on the dataset shampoo.csv.

  1. Create an autoregression model (Autoreg) with 6 lags for the "Sales" column of the df DataFrame.
  2. Fit the model to data.
  3. Make predictions using the model. Start forecasting at the first row (the start parameter), and set the dynamic parameter to False.
  4. Visualize the results: show the first 150 observations of the "Sales" column of the df DataFrame within the first call of the .plot() function and the first 150 predicted values within the second call.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 3
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
We're sorry to hear that something went wrong. What happened?
some-alt