Challenge 1
Tâche
Swipe to start coding
In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.
- Read the dataset
'adult-census.csv' - Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the
np.nanobject - Remove rows with missing values
- Let's start with processing categorical data - columns
'workclass','sex'Use a one-hot encoding method to encode them - For numeric data (
'age','hours-per-week'), you will need to scale the data - Print processed data
Solution
Tout était clair ?
Merci pour vos commentaires !
Section 6. Chapitre 1
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Suggested prompts:
Résumer ce chapitre
Expliquer le code dans file
Expliquer pourquoi file ne résout pas la tâche
Awesome!
Completion rate improved to 3.33
Challenge 1
Glissez pour afficher le menu
Tâche
Swipe to start coding
In this challenge, you will need to work with the 'adult-census.csv' dataset. It contains both categorical and numerical data. Your task will be to prepare the data for processing.
- Read the dataset
'adult-census.csv' - Explore the dataset. Carefully check which character indicates the missed data in the dataset and replace it with the
np.nanobject - Remove rows with missing values
- Let's start with processing categorical data - columns
'workclass','sex'Use a one-hot encoding method to encode them - For numeric data (
'age','hours-per-week'), you will need to scale the data - Print processed data
Solution
Tout était clair ?
Merci pour vos commentaires !
Section 6. Chapitre 1
single