Challenge: Define metric
Tâche
Swipe to start coding
In this task, you must add the 'Average Earnings per Click metric'
to the control and test samples. After that, you should plot the histograms of the new columns and mark the mean values of the metrics on the graph.
- Import libraries.
- Read the files.
- Define the
'Average Earnings per Click'
metric and add it to both samples. - Add a line of the mean value.
Solution
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Import libraries
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
# Read .csv files
df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')
# Define metric
df_test['Average Earnings per Click'] = df_test['Earning'] / df_test['Click']
df_control['Average Earnings per Click'] = df_control['Earning'] / df_control['Click']
# Ploting hist
sns.histplot(df_control['Average Earnings per Click'], color="#1e2635", label="AEC of Control Group")
sns.histplot(df_test['Average Earnings per Click'], color="#ff8a00", label="AEC of Test Group")
# Add mean line
plt.axvline(df_control['Average Earnings per Click'].mean(), color="#1e2635", linestyle='dashed', linewidth=1, label='Mean Control Group')
plt.axvline(df_test['Average Earnings per Click'].mean(), color="#ff8a00", linestyle='dashed', linewidth=1, label='Mean Test Group')
# Sign the axes
plt.xlabel('Average Earnings per Click')
plt.ylabel('Frequency')
plt.legend()
plt.title('Histogram of Average Earnings per Click')
# Show the result
plt.show()
Tout était clair ?
Merci pour vos commentaires !
Section 5. Chapitre 2
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Import libraries
___ ___ as plt
___ ___ as pd
___ ___ as sns
# Read .csv files
df_control = pd.___('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.___('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')
# Define metric
df_test['Average Earnings per Click'] = df_test['___'] / df_test['___']
df_control['Average Earnings per Click'] = df_control['___'] / df_control['___']
# Ploting hist
sns.histplot(df_control['Average Earnings per Click'], color="#1e2635", label="AEC of Control Group")
sns.histplot(df_test['Average Earnings per Click'], color="#ff8a00", label="AEC of Test Group")
# Add mean line
plt___(df_control['Average Earnings per Click']___, color="#1e2635", linestyle='dashed', linewidth=1, label='Mean Control Group')
plt___(df_test['Average Earnings per Click']___, color="#ff8a00", linestyle='dashed', linewidth=1, label='Mean Test Group')
# Sign the axes
plt.xlabel('Average Earnings per Click')
plt.ylabel('Frequency')
plt.legend()
plt.title('Histogram of Average Earnings per Click')
# Show the result
plt.show()
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion