Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Automated ARIMA Parameter Selection | Advanced ARIMA Techniques and Model Selection
Time Series Forecasting with ARIMA

bookAutomated ARIMA Parameter Selection

Automating the selection of ARIMA parameters is an essential step in building effective time series forecasting models. Manually choosing the orders for the autoregressive (p), differencing (d), and moving average (q) components can be tedious and often relies on expert judgment or trial and error. To address this, practitioners use systematic approaches like grid search, which involves fitting multiple ARIMA models with different combinations of parameters and evaluating their performance. The most common criteria for comparing these models are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both AIC and BIC measure the trade-off between model fit and complexity: lower values indicate a better model, but overly complex models are penalized to prevent overfitting.

Note
Note

A well-chosen ARIMA model balances complexity and accuracy: a model that is too simple may miss important patterns, while an overly complex model may fit noise rather than signal. Information criteria like AIC and BIC help you find this balance by penalizing unnecessary parameters.

12345678910111213141516171819202122232425262728293031323334353637383940
import pandas as pd import numpy as np import warnings from statsmodels.tsa.arima.model import ARIMA from statsmodels.tools.sm_exceptions import ConvergenceWarning # Suppress harmless warnings for cleaner output warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=ConvergenceWarning) # Generate a simple time series for demonstration np.random.seed(42) data = pd.Series(np.random.randn(100).cumsum()) # Define parameter ranges for grid search p_values = [0, 1, 2] d_values = [0, 1] q_values = [0, 1, 2] best_aic = np.inf best_order = None best_model = None # Grid search for ARIMA parameters for p in p_values: for d in d_values: for q in q_values: try: model = ARIMA(data, order=(p, d, q)) model_fit = model.fit() aic = model_fit.aic print(f"ARIMA({p},{d},{q}) AIC: {aic:.2f}") if aic < best_aic: best_aic = aic best_order = (p, d, q) best_model = model_fit except Exception: continue print(f"\nBest ARIMA order: {best_order} with AIC: {best_aic:.2f}")
copy
question mark

Which statement best describes the purpose of using AIC or BIC in ARIMA model selection?

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 2

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Can you explain what the parameters p, d, and q represent in ARIMA?

How do I interpret the AIC values in the output?

What should I do after finding the best ARIMA order?

Awesome!

Completion rate improved to 6.67

bookAutomated ARIMA Parameter Selection

Glissez pour afficher le menu

Automating the selection of ARIMA parameters is an essential step in building effective time series forecasting models. Manually choosing the orders for the autoregressive (p), differencing (d), and moving average (q) components can be tedious and often relies on expert judgment or trial and error. To address this, practitioners use systematic approaches like grid search, which involves fitting multiple ARIMA models with different combinations of parameters and evaluating their performance. The most common criteria for comparing these models are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both AIC and BIC measure the trade-off between model fit and complexity: lower values indicate a better model, but overly complex models are penalized to prevent overfitting.

Note
Note

A well-chosen ARIMA model balances complexity and accuracy: a model that is too simple may miss important patterns, while an overly complex model may fit noise rather than signal. Information criteria like AIC and BIC help you find this balance by penalizing unnecessary parameters.

12345678910111213141516171819202122232425262728293031323334353637383940
import pandas as pd import numpy as np import warnings from statsmodels.tsa.arima.model import ARIMA from statsmodels.tools.sm_exceptions import ConvergenceWarning # Suppress harmless warnings for cleaner output warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=ConvergenceWarning) # Generate a simple time series for demonstration np.random.seed(42) data = pd.Series(np.random.randn(100).cumsum()) # Define parameter ranges for grid search p_values = [0, 1, 2] d_values = [0, 1] q_values = [0, 1, 2] best_aic = np.inf best_order = None best_model = None # Grid search for ARIMA parameters for p in p_values: for d in d_values: for q in q_values: try: model = ARIMA(data, order=(p, d, q)) model_fit = model.fit() aic = model_fit.aic print(f"ARIMA({p},{d},{q}) AIC: {aic:.2f}") if aic < best_aic: best_aic = aic best_order = (p, d, q) best_model = model_fit except Exception: continue print(f"\nBest ARIMA order: {best_order} with AIC: {best_aic:.2f}")
copy
question mark

Which statement best describes the purpose of using AIC or BIC in ARIMA model selection?

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 4. Chapitre 2
some-alt