Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Measuring Volatility in Asset Returns | Risk Metrics and Uncertainty
R for Financial Analysts

bookMeasuring Volatility in Asset Returns

123456789101112
# Create synthetic daily returns set.seed(123) daily_returns <- rnorm(252, mean = 0.0005, sd = 0.01) # Calculate the standard deviation of daily returns daily_volatility <- sd(daily_returns) # Annualize the volatility (assuming 252 trading days per year) annualized_volatility <- daily_volatility * sqrt(252) # Print the annualized volatility print(annualized_volatility)
copy
123456789101112131415161718192021222324
# To analyze how risk changes over time, calculate rolling volatility # Load the zoo package for rollapply library(zoo) # Calculate 21-day (approximately 1 month) rolling volatility rolling_volatility <- rollapply( daily_returns, width = 21, FUN = sd, fill = NA, align = "right" ) # Annualize the rolling volatility rolling_annualized_volatility <- rolling_volatility * sqrt(252) # Plot the rolling annualized volatility plot( rolling_annualized_volatility, type = "l", main = "21-Day Rolling Annualized Volatility", xlab = "Time", ylab = "Annualized Volatility" )
copy
question mark

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 1

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Can you explain why we use 252 trading days for annualization?

How does rolling volatility help in risk management?

What other window sizes can be used for rolling volatility analysis?

bookMeasuring Volatility in Asset Returns

Glissez pour afficher le menu

123456789101112
# Create synthetic daily returns set.seed(123) daily_returns <- rnorm(252, mean = 0.0005, sd = 0.01) # Calculate the standard deviation of daily returns daily_volatility <- sd(daily_returns) # Annualize the volatility (assuming 252 trading days per year) annualized_volatility <- daily_volatility * sqrt(252) # Print the annualized volatility print(annualized_volatility)
copy
123456789101112131415161718192021222324
# To analyze how risk changes over time, calculate rolling volatility # Load the zoo package for rollapply library(zoo) # Calculate 21-day (approximately 1 month) rolling volatility rolling_volatility <- rollapply( daily_returns, width = 21, FUN = sd, fill = NA, align = "right" ) # Annualize the rolling volatility rolling_annualized_volatility <- rolling_volatility * sqrt(252) # Plot the rolling annualized volatility plot( rolling_annualized_volatility, type = "l", main = "21-Day Rolling Annualized Volatility", xlab = "Time", ylab = "Annualized Volatility" )
copy
question mark

Select the correct answer

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 1
some-alt