Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Simulate Projectile Motion | Dynamics and System Simulation
Python for Mechanical Engineers

bookChallenge: Simulate Projectile Motion

Simulating projectile motion is a classic dynamics problem. Automating this with Python helps visualize and analyze trajectories. By modeling a projectile launched at an angle with a given initial velocity, you can predict its path using fundamental physics equations. This approach is valuable for understanding motion, optimizing launch parameters, and visualizing results for engineering applications.

Tâche

Swipe to start coding

Implement a function that simulates the 2D trajectory of a projectile. The function should:

  • Accept initial velocity (v0), launch angle in degrees (angle_deg), and time step (dt) as arguments.
  • Calculate the x and y positions at each time increment until the projectile lands (when y becomes negative).
  • Return two lists: one for all x positions and one for all y positions.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 3
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookChallenge: Simulate Projectile Motion

Glissez pour afficher le menu

Simulating projectile motion is a classic dynamics problem. Automating this with Python helps visualize and analyze trajectories. By modeling a projectile launched at an angle with a given initial velocity, you can predict its path using fundamental physics equations. This approach is valuable for understanding motion, optimizing launch parameters, and visualizing results for engineering applications.

Tâche

Swipe to start coding

Implement a function that simulates the 2D trajectory of a projectile. The function should:

  • Accept initial velocity (v0), launch angle in degrees (angle_deg), and time step (dt) as arguments.
  • Calculate the x and y positions at each time increment until the projectile lands (when y becomes negative).
  • Return two lists: one for all x positions and one for all y positions.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 3
single

single

some-alt