Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Data Cleaning | Section
Data Preprocessing and Feature Engineering

bookChallenge: Data Cleaning

Tâche

Swipe to start coding

You are given the Titanic dataset loaded through the Seaborn library. Your task is to clean the dataset using pandas by performing the following steps:

  1. Load the dataset with sns.load_dataset("titanic").
  2. Replace missing values in the column age with the column mean.
  3. Replace missing values in the column embarked with the most frequent value (mode).
  4. Remove duplicate rows.
  5. Remove outliers in the column fare using the IQR method.

Return the final cleaned dataset as a DataFrame named cleaned_data.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 4
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookChallenge: Data Cleaning

Glissez pour afficher le menu

Tâche

Swipe to start coding

You are given the Titanic dataset loaded through the Seaborn library. Your task is to clean the dataset using pandas by performing the following steps:

  1. Load the dataset with sns.load_dataset("titanic").
  2. Replace missing values in the column age with the column mean.
  3. Replace missing values in the column embarked with the most frequent value (mode).
  4. Remove duplicate rows.
  5. Remove outliers in the column fare using the IQR method.

Return the final cleaned dataset as a DataFrame named cleaned_data.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 4
single

single

some-alt