Challenge: Average Metrics Across Taxi Types
Great! As for now, we have our dataset cleared from abnormally long rides and rides with ending time preceded starting. As we investigated, it happened because of misusage of 12 and 24-hour formats.
Let's try to find out some interesting insights from this dataset.
Swipe to start coding
- Apply
.total_seconds()
function toduration
column usingmap
andlambda
functions. - Group observations by taxi type (
vendor_id
column). Then, choose columnsdist_meters
,duration
, and calculate mean. Then apply functionavg_m
todist_meters
andavg_dur
toduration
. The functions are defined in the code.
Solution
Merci pour vos commentaires !
single
Demandez à l'IA
Demandez à l'IA
Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion
Résumer ce chapitre
Expliquer le code dans file
Expliquer pourquoi file ne résout pas la tâche
Awesome!
Completion rate improved to 3.23
Challenge: Average Metrics Across Taxi Types
Glissez pour afficher le menu
Great! As for now, we have our dataset cleared from abnormally long rides and rides with ending time preceded starting. As we investigated, it happened because of misusage of 12 and 24-hour formats.
Let's try to find out some interesting insights from this dataset.
Swipe to start coding
- Apply
.total_seconds()
function toduration
column usingmap
andlambda
functions. - Group observations by taxi type (
vendor_id
column). Then, choose columnsdist_meters
,duration
, and calculate mean. Then apply functionavg_m
todist_meters
andavg_dur
toduration
. The functions are defined in the code.
Solution
Merci pour vos commentaires !
Awesome!
Completion rate improved to 3.23single