Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Implement and Compare Root-Finding Methods | Core Numerical Algorithms
Numerical Methods for Scientific Computing with Python

bookChallenge: Implement and Compare Root-Finding Methods

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Tâche

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 4
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

bookChallenge: Implement and Compare Root-Finding Methods

Glissez pour afficher le menu

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Tâche

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 4
single

single

some-alt