Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Classification Metrics | Classification Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Classification Metrics

Tâche

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 7
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Classification Metrics

Glissez pour afficher le menu

Tâche

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 7
single

single

some-alt