Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Regression Metrics | Regression Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Regression Metrics

Tâche

Swipe to start coding

You are given a linear regression task using the diabetes dataset from scikit-learn. Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.

Perform the following steps:

  1. Load the diabetes dataset.
  2. Split the data into training and testing sets.
  3. Train a Linear Regression model.
  4. Predict on the test set and compute:
    • Mean Squared Error (MSE)
    • Root Mean Squared Error (RMSE)
    • Mean Absolute Error (MAE)
    • R² Score
  5. Perform 5-fold cross-validation using the model. Use scoring="r2" as the estimator for cross-validation.
  6. Print all metrics in a readable format.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 4
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Regression Metrics

Glissez pour afficher le menu

Tâche

Swipe to start coding

You are given a linear regression task using the diabetes dataset from scikit-learn. Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.

Perform the following steps:

  1. Load the diabetes dataset.
  2. Split the data into training and testing sets.
  3. Train a Linear Regression model.
  4. Predict on the test set and compute:
    • Mean Squared Error (MSE)
    • Root Mean Squared Error (RMSE)
    • Mean Absolute Error (MAE)
    • R² Score
  5. Perform 5-fold cross-validation using the model. Use scoring="r2" as the estimator for cross-validation.
  6. Print all metrics in a readable format.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 2. Chapitre 4
single

single

some-alt