Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Challenge: Unsupervised Metrics | Unsupervised Learning Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Unsupervised Metrics

Tâche

Swipe to start coding

You will perform a full unsupervised model evaluation pipeline, consisting of anomaly detection, dimensionality reduction, and clustering.

Perform the following steps:

1. Anomaly Detection Evaluation

  • Use the make_classification dataset from scikit-learn with strong class imbalance (weights=[0.95, 0.05]).
  • Train an IsolationForest model to detect anomalies.
  • Compute:
    • Precision.
    • Recall.
    • ROC–AUC.

2. Dimensionality Reduction Evaluation

  • Apply PCA to the dataset (2 components).
  • Compute:
    • Explained Variance Ratio.
    • Reconstruction Error between original and inverse-transformed data.

3. Clustering Evaluation

  • Apply KMeans with n_clusters=3 on the PCA-reduced data.
  • Compute:
    • Inertia.
    • Silhouette Score.
    • Davies–Bouldin Score.
    • Calinski–Harabasz Score.

Solution

Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 5
single

single

Demandez à l'IA

expand

Demandez à l'IA

ChatGPT

Posez n'importe quelle question ou essayez l'une des questions suggérées pour commencer notre discussion

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Unsupervised Metrics

Glissez pour afficher le menu

Tâche

Swipe to start coding

You will perform a full unsupervised model evaluation pipeline, consisting of anomaly detection, dimensionality reduction, and clustering.

Perform the following steps:

1. Anomaly Detection Evaluation

  • Use the make_classification dataset from scikit-learn with strong class imbalance (weights=[0.95, 0.05]).
  • Train an IsolationForest model to detect anomalies.
  • Compute:
    • Precision.
    • Recall.
    • ROC–AUC.

2. Dimensionality Reduction Evaluation

  • Apply PCA to the dataset (2 components).
  • Compute:
    • Explained Variance Ratio.
    • Reconstruction Error between original and inverse-transformed data.

3. Clustering Evaluation

  • Apply KMeans with n_clusters=3 on the PCA-reduced data.
  • Compute:
    • Inertia.
    • Silhouette Score.
    • Davies–Bouldin Score.
    • Calinski–Harabasz Score.

Solution

Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 3. Chapitre 5
single

single

some-alt